» Articles » PMID: 35253629

Therapeutic Targeting of the USP2-E2F4 Axis Inhibits Autophagic Machinery Essential for Zinc Homeostasis in Cancer Progression

Overview
Journal Autophagy
Specialty Cell Biology
Date 2022 Mar 7
PMID 35253629
Authors
Affiliations
Soon will be listed here.
Abstract

Macroautophagy/autophagy is a conserved cellular process associated with tumorigenesis and aggressiveness, while mechanisms regulating expression of autophagic machinery genes in cancers still remain elusive. Herein, we identified E2F4 (E2F transcription factor 4) as a novel transcriptional activator of cytoprotective autophagy crucial for zinc homeostasis in cancer cells. Gain- and loss-of-function studies showed that promoted autophagy in a cell cycle-dependent manner, resulting in facilitated degradation of MT (metallothionein) proteins, elevated distribution of Zn within autophagosomes, decreased labile intracellular zinc ions, and increased growth, invasion, and metastasis of gastric cancer cells. Mechanistically, E2F4 directly regulated the transcription of (autophagy related 2A) and (unc-51 like autophagy activating kinase 2), leading to autophagic degradation of MT1E, MT1M, and MT1X, while USP2 (ubiquitin specific peptidase 2) stabilized E2F4 protein to induce its transactivation via physical interaction and deubiquitination in cancer cells. Rescue experiments revealed that harbored oncogenic properties via -facilitated autophagy and zinc homeostasis. Emetine, a small chemical inhibitor of autophagy, was able to block interaction between UPS2 and E2F4, increase labile intracellular zinc ions, and suppress tumorigenesis and aggressiveness. In clinical gastric cancer specimens, both and were upregulated and associated with poor outcome of patients. These findings indicate that therapeutic targeting of the axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. 3-MA: 3-methyladenine; ANOVA: analysis of variance; ATG2A: autophagy related 2A; ATG5: autophagy related 5; ATP: adenosine triphosphate; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CCND1: cyclin D1; CDK: cyclin dependent kinase; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; E2F4: E2F transcription factor 4; eATP: extracellular adenosine triphosphate; EBSS: Earle's balanced salt solution; FP: first progression; FRET: fluorescence resonance energy transfer; FUCCI: fluorescent ubiquitination-based cell cycle indicator; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDM2: MDM2 proto-oncogene; MKI67/Ki-67: marker of proliferation Ki-67; MT: metallothionein; MT1E: metallothionein 1E; MT1M: metallothionein 1M; MT1X: metallothionein 1X; MTT: 3-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide; OS: overall survival; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; qPCR: quantitative PCR; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; UBXN1: UBX domain protein 1; Ub: ubiquitin; ULK2: unc-51 like autophagy activating kinase 2; USP14: ubiquitin specific peptidase 14; USP2: ubiquitin specific peptidase 2; USP5: ubiquitin specific peptidase 5; USP7: ubiquitin specific peptidase 7; ZnCl: zinc chloride.

Citing Articles

USP5 Promotes Head and Neck Squamous Cell Carcinoma Progression via mTOR Signaling Pathway.

Xiong N, Wang Y, Jiang J Cancer Med. 2025; 14(5):e70752.

PMID: 40066708 PMC: 11894462. DOI: 10.1002/cam4.70752.


Identification and analysis of prognostic ion homeostasis characteristics in kidney renal clear cell carcinoma.

Zhang X, Qian X, Zhao Y, Ye M, Li L, Chu J Heliyon. 2025; 11(2):e41736.

PMID: 39897849 PMC: 11782977. DOI: 10.1016/j.heliyon.2025.e41736.


Biometallic ions and derivatives: a new direction for cancer immunotherapy.

Zhao L, Gui Y, Cai J, Deng X Mol Cancer. 2025; 24(1):17.

PMID: 39815289 PMC: 11734411. DOI: 10.1186/s12943-025-02225-w.


YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

Yang C, Qu J, Cheng Y, Tian M, Wang Z, Wang X J Transl Med. 2024; 22(1):1153.

PMID: 39731187 PMC: 11673900. DOI: 10.1186/s12967-024-05956-4.


Highly Efficient Delivery of Novel MiR-13896 by Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Inhibits Gastric Cancer Progression by Targeting ATG2A-Mediated Autophagy.

Wu P, Wang M, Jin C, Li L, Tang Y, Wang Z Biomater Res. 2024; 28:0119.

PMID: 39697182 PMC: 11654722. DOI: 10.34133/bmr.0119.


References
1.
Zhao X, Li D, Pu J, Mei H, Yang D, Xiang X . CTCF cooperates with noncoding RNA MYCNOS to promote neuroblastoma progression through facilitating MYCN expression. Oncogene. 2015; 35(27):3565-76. DOI: 10.1038/onc.2015.422. View

2.
Galavotti S, Bartesaghi S, Faccenda D, Shaked-Rabi M, Sanzone S, McEvoy A . The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene. 2012; 32(6):699-712. DOI: 10.1038/onc.2012.111. View

3.
Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A . Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424. DOI: 10.3322/caac.21492. View

4.
Di Virgilio F, Adinolfi E . Extracellular purines, purinergic receptors and tumor growth. Oncogene. 2016; 36(3):293-303. PMC: 5269532. DOI: 10.1038/onc.2016.206. View

5.
Levine B, Kroemer G . Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 2019; 176(1-2):11-42. PMC: 6347410. DOI: 10.1016/j.cell.2018.09.048. View