» Articles » PMID: 35236857

Electro-optic Characterization of Synthesized Infrared-visible Light Fields

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Mar 3
PMID 35236857
Authors
Affiliations
Soon will be listed here.
Abstract

The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 µm (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution.

Citing Articles

Electro-optic cavities for in-situ measurement of cavity fields.

Spencer M, Urban J, Frenzel M, Mueller N, Minakova O, Wolf M Light Sci Appl. 2025; 14(1):69.

PMID: 39910060 PMC: 11799363. DOI: 10.1038/s41377-024-01685-x.


Quantum-enhanced time-domain spectroscopy.

Adamou D, Hirsch L, Shields T, Yoon S, Dada A, Weaver J Sci Adv. 2025; 11(4):eadt2187.

PMID: 39854454 PMC: 11758994. DOI: 10.1126/sciadv.adt2187.


Lightwave-electronic harmonic frequency mixing.

Yeung M, Chou L, Turchetti M, Ritzkowsky F, Berggren K, Keathley P Sci Adv. 2024; 10(33):eadq0642.

PMID: 39141736 PMC: 11800882. DOI: 10.1126/sciadv.adq0642.


Ultra-broadband all-optical sampling of optical waveforms.

Zimin D, Yakovlev V, Karpowicz N Sci Adv. 2022; 8(51):eade1029.

PMID: 36542717 PMC: 9770938. DOI: 10.1126/sciadv.ade1029.

References
1.
Goulielmakis E, Yakovlev V, Cavalieri A, Uiberacker M, Pervak V, Apolonski A . Attosecond control and measurement: lightwave electronics. Science. 2007; 317(5839):769-75. DOI: 10.1126/science.1142855. View

2.
Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T . Attosecond metrology. Nature. 2001; 414(6863):509-13. DOI: 10.1038/35107000. View

3.
Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G . X-ray pulses approaching the attosecond frontier. Science. 2001; 291(5510):1923-7. DOI: 10.1126/science.1058561. View

4.
Ciappina M, Perez-Hernandez J, Landsman A, Okell W, Zherebtsov S, Forg B . Attosecond physics at the nanoscale. Rep Prog Phys. 2017; 80(5):054401. DOI: 10.1088/1361-6633/aa574e. View

5.
Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S . Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science. 2014; 346(6207):336-9. DOI: 10.1126/science.1254061. View