» Articles » PMID: 35207372

Rapid Genetic Diagnosis for Okinawan Patients with Enlarged Vestibular Aqueduct Using Single-Stranded Tag Hybridization Chromatographic Printed-Array Strip

Overview
Journal J Clin Med
Specialty General Medicine
Date 2022 Feb 25
PMID 35207372
Authors
Affiliations
Soon will be listed here.
Abstract

Both Pendred syndrome (PS) and nonsyndromic hearing loss with an enlarged vestibular aqueduct (EVA) are autosomal recessive disorders caused by pathogenic variants. The spectrum of pathogenic variants varies with the ethnic background. Among the patients with EVA in Okinawa, 94% had some combination of NM_000441.2(SLC26A4):c.1707+5G>A and NM_000441.2(SLC26A4):c.2168A>G(p.His723Arg), the two pathogenic variants that are the most common in this population. We identified these two pathogenic variants using a novel genotyping method that employed an allele-specific polymerase chain reaction (PCR) from a gDNA and single-stranded tag hybridization chromatographic printed-array strip (STH-PAS) in DNA samples obtained from 48 samples in Okinawa, including 34 patients with EVA and 14 carriers of c.1707+5G>A or c.2168A>G. In addition, whole blood and saliva samples were used for analysis in this genotyping method with direct PCR. The results of STH-PAS genotyping were consistent with those obtained using standard Sanger sequencing for all samples. The accuracy of the STH-PAS method is 100% under the optimized conditions. STH-PAS genotyping provided a diagnosis in 30 out of 34 patients (88%) in Okinawan patients with EVA in under 3 h. The turn-around time for STH-PAS genotyping used with direct PCR was 2 h as a result of the omission of the DNA extraction and purification steps. Using information about the ethnic distribution of pathogenic variants in the gene, STH-PAS genotyping performs a rapid genetic diagnosis that is simple and has a considerably improved efficiency.

References
1.
Fujii K, Matsubara Y, Akanuma J, Takahashi K, Kure S, Suzuki Y . Mutation detection by TaqMan-allele specific amplification: application to molecular diagnosis of glycogen storage disease type Ia and medium-chain acyl-CoA dehydrogenase deficiency. Hum Mutat. 2000; 15(2):189-96. DOI: 10.1002/(SICI)1098-1004(200002)15:2<189::AID-HUMU8>3.0.CO;2-H. View

2.
Tsukada K, Nishio S, Hattori M, Usami S . Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: their origin and a literature review. Ann Otol Rhinol Laryngol. 2015; 124 Suppl 1:61S-76S. DOI: 10.1177/0003489415575060. View

3.
Nakagawa O, Ito S, Hanyu O, Yamazaki M, Urushiyama M, Tani N . Female siblings with Pendred's syndrome. Intern Med. 1994; 33(6):369-72. DOI: 10.2169/internalmedicine.33.369. View

4.
Miyagawa M, Nishio S, Usami S . Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study. J Hum Genet. 2014; 59(5):262-8. PMC: 4521295. DOI: 10.1038/jhg.2014.12. View

5.
Choi B, Stewart A, Nishimura K, Cha W, Seong M, Park S . Efficient molecular genetic diagnosis of enlarged vestibular aqueducts in East Asians. Genet Test Mol Biomarkers. 2009; 13(5):679-87. PMC: 2953255. DOI: 10.1089/gtmb.2009.0054. View