» Articles » PMID: 35205415

ScInTime: A Computational Method Leveraging Single-Cell Trajectory and Gene Regulatory Networks to Identify Master Regulators of Cellular Differentiation

Overview
Journal Genes (Basel)
Publisher MDPI
Date 2022 Feb 25
PMID 35205415
Authors
Affiliations
Soon will be listed here.
Abstract

Trajectory inference (TI) or pseudotime analysis has dramatically extended the analytical framework of single-cell RNA-seq data, allowing regulatory genes contributing to cell differentiation and those involved in various dynamic cellular processes to be identified. However, most TI analysis procedures deal with individual genes independently while overlooking the regulatory relations between genes. Integrating information from gene regulatory networks (GRNs) at different pseudotime points may lead to more interpretable TI results. To this end, we introduce scInTime-an unsupervised machine learning framework coupling inferred trajectory with single-cell GRNs (scGRNs) to identify master regulatory genes. We validated the performance of our method by analyzing multiple scRNA-seq data sets. In each of the cases, top-ranking genes predicted by scInTime supported their functional relevance with corresponding signaling pathways, in line with the results of available functional studies. Overall results demonstrated that scInTime is a powerful tool to exploit pseudotime-series scGRNs, allowing for a clear interpretation of TI results toward more significant biological insights.

Citing Articles

Controlled Noise: Evidence of epigenetic regulation of Single-Cell expression variability.

Zhong Y, Cui S, Yang Y, Cai J Bioinformatics. 2024; .

PMID: 39018178 PMC: 11283284. DOI: 10.1093/bioinformatics/btae457.


Studying temporal dynamics of single cells: expression, lineage and regulatory networks.

Pan X, Zhang X Biophys Rev. 2024; 16(1):57-67.

PMID: 38495440 PMC: 10937865. DOI: 10.1007/s12551-023-01090-5.


Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks.

Yang Y, Li G, Zhong Y, Xu Q, Chen B, Lin Y Nucleic Acids Res. 2023; 51(13):6578-6592.

PMID: 37246643 PMC: 10359630. DOI: 10.1093/nar/gkad450.


scTenifoldXct: A semi-supervised method for predicting cell-cell interactions and mapping cellular communication graphs.

Yang Y, Li G, Zhong Y, Xu Q, Lin Y, Roman-Vicharra C Cell Syst. 2023; 14(4):302-311.e4.

PMID: 36787742 PMC: 10121998. DOI: 10.1016/j.cels.2023.01.004.

References
1.
Hubner J, Raschke M, Rutschle I, Grassle S, Hasenberg T, Schirrmann K . Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci Rep. 2018; 8(1):15010. PMC: 6177413. DOI: 10.1038/s41598-018-33462-3. View

2.
Murphy S, Miyamoto M, Kervadec A, Kannan S, Tampakakis E, Kambhampati S . PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat Commun. 2021; 12(1):1648. PMC: 7955035. DOI: 10.1038/s41467-021-21957-z. View

3.
Onichtchouk D, Geier F, Polok B, Messerschmidt D, Mossner R, Wendik B . Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol. 2010; 6:354. PMC: 2858445. DOI: 10.1038/msb.2010.9. View

4.
Santin J, Uchoa F, Lima M, Rabello M, Daufenback Machado I, Hernandes M . Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor. Eur J Pharm Sci. 2013; 48(4-5):689-97. DOI: 10.1016/j.ejps.2012.12.029. View

5.
Compagnone M, Gatti V, Presutti D, Ruberti G, Fierro C, Markert E . ΔNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis. Proc Natl Acad Sci U S A. 2017; 114(50):13254-13259. PMC: 5740608. DOI: 10.1073/pnas.1711777114. View