6.
De Caluwe J, Dupont G
. The progression towards Alzheimer's disease described as a bistable switch arising from the positive loop between amyloids and Ca(2+). J Theor Biol. 2013; 331:12-8.
DOI: 10.1016/j.jtbi.2013.04.015.
View
7.
Felix-Martinez G, Godinez-Fernandez J
. Mathematical models of electrical activity of the pancreatic β-cell: a physiological review. Islets. 2014; 6(3):e949195.
PMC: 4292577.
DOI: 10.4161/19382014.2014.949195.
View
8.
Berridge M
. Calcium oscillations. J Biol Chem. 1990; 265(17):9583-6.
View
9.
Zott B, Simon M, Hong W, Unger F, Chen-Engerer H, Frosch M
. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science. 2019; 365(6453):559-565.
PMC: 6690382.
DOI: 10.1126/science.aay0198.
View
10.
Wacquier B, Combettes L, Dupont G
. Dual dynamics of mitochondrial permeability transition pore opening. Sci Rep. 2020; 10(1):3924.
PMC: 7054270.
DOI: 10.1038/s41598-020-60177-1.
View
11.
Latulippe J, Lotito D, Murby D
. A mathematical model for the effects of amyloid beta on intracellular calcium. PLoS One. 2018; 13(8):e0202503.
PMC: 6105003.
DOI: 10.1371/journal.pone.0202503.
View
12.
. Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement. 2017; 13(2):178-182.e17.
DOI: 10.1016/j.jalz.2016.12.006.
View
13.
Liu L, Gao H, Zaikin A, Chen S
. Unraveling Aβ-Mediated Multi-Pathway Calcium Dynamics in Astrocytes: Implications for Alzheimer's Disease Treatment From Simulations. Front Physiol. 2021; 12:767892.
PMC: 8581622.
DOI: 10.3389/fphys.2021.767892.
View
14.
Ishii M, Hiller A, Pham L, McGuire M, Iadecola C, Wang G
. Amyloid-Beta Modulates Low-Threshold Activated Voltage-Gated L-Type Calcium Channels of Arcuate Neuropeptide Y Neurons Leading to Calcium Dysregulation and Hypothalamic Dysfunction. J Neurosci. 2019; 39(44):8816-8825.
PMC: 6820205.
DOI: 10.1523/JNEUROSCI.0617-19.2019.
View
15.
Roussel C, Erneux T, Schiffmann S, Gall D
. Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium. 2006; 39(5):455-66.
DOI: 10.1016/j.ceca.2006.01.004.
View
16.
Busche M, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold K, Haass C
. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science. 2008; 321(5896):1686-9.
DOI: 10.1126/science.1162844.
View
17.
Gall D, Dupont G
. Tonic Activation of Extrasynaptic NMDA Receptors Decreases Intrinsic Excitability and Promotes Bistability in a Model of Neuronal Activity. Int J Mol Sci. 2020; 21(1).
PMC: 6982144.
DOI: 10.3390/ijms21010206.
View
18.
Fletcher P, Li Y
. An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophys J. 2009; 96(11):4514-24.
PMC: 3304551.
DOI: 10.1016/j.bpj.2009.03.037.
View
19.
Bicca M, Figueiredo C, Piermartiri T, Meotti F, Bouzon Z, Tasca C
. The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience. 2011; 192:631-41.
DOI: 10.1016/j.neuroscience.2011.06.038.
View
20.
Yamamoto K, Yamamoto R, Kato N
. Amyloid β and Amyloid Precursor Protein Synergistically Suppress Large-Conductance Calcium-Activated Potassium Channel in Cortical Neurons. Front Aging Neurosci. 2021; 13:660319.
PMC: 8211014.
DOI: 10.3389/fnagi.2021.660319.
View