» Articles » PMID: 35178471

Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction

Overview
Journal ACS Energy Lett
Date 2022 Feb 18
PMID 35178471
Authors
Affiliations
Soon will be listed here.
Abstract

The successful development of artificial photosynthesis requires finding new materials able to efficiently harvest sunlight and catalyze hydrogen generation and carbon dioxide reduction reactions. Plasmonic nanoparticles are promising candidates for these tasks, due to their ability to confine solar energy into molecular regions. Here, we review recent developments in hybrid plasmonic photocatalysis, including the combination of plasmonic nanomaterials with catalytic metals, semiconductors, perovskites, 2D materials, metal-organic frameworks, and electrochemical cells. We perform a quantitative comparison of the demonstrated activity and selectivity of these materials for solar fuel generation in the liquid phase. In this way, we critically assess the state-of-the-art of hybrid plasmonic photocatalysts for solar fuel production, allowing its benchmarking against other existing heterogeneous catalysts. Our analysis allows the identification of the best performing plasmonic systems, useful to design a new generation of plasmonic catalysts.

Citing Articles

Advanced TiO-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing.

Ahasan T, Edirisooriya E, Senanayake P, Xu P, Wang H Molecules. 2025; 30(5).

PMID: 40076350 PMC: 11901858. DOI: 10.3390/molecules30051127.


A perspective on field-effect in energy and environmental catalysis.

Li H, Li H, Du M, Zhou E, Leow W, Liu M Chem Sci. 2025; 16(4):1506-1527.

PMID: 39759941 PMC: 11694487. DOI: 10.1039/d4sc07740g.


Advances in fundamentals and application of plasmon-assisted CO photoreduction.

Fusco Z, Beck F Nanophotonics. 2024; 13(4):387-417.

PMID: 39635649 PMC: 11501834. DOI: 10.1515/nanoph-2023-0793.


Sustainable chemistry with plasmonic photocatalysts.

Yuan L, Bourgeois B, Carlin C, da Jornada F, Dionne J Nanophotonics. 2024; 12(14):2745-2762.

PMID: 39635497 PMC: 11501645. DOI: 10.1515/nanoph-2023-0149.


Noble Metal Plasmon-Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation.

Kaushik T, Ghosh S, Dolkar T, Biswas R, Dutta A ACS Nanosci Au. 2024; 4(5):273-289.

PMID: 39430376 PMC: 11487674. DOI: 10.1021/acsnanoscienceau.4c00009.


References
1.
Luo S, Ren X, Lin H, Song H, Ye J . Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem Sci. 2021; 12(16):5701-5719. PMC: 8179669. DOI: 10.1039/d1sc00064k. View

2.
Linic S, Chavez S, Elias R . Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat Mater. 2021; 20(7):916-924. DOI: 10.1038/s41563-020-00858-4. View

3.
Aslam U, Chavez S, Linic S . Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat Nanotechnol. 2017; 12(10):1000-1005. DOI: 10.1038/nnano.2017.131. View

4.
Dhiman M, Maity A, Das A, Belgamwar R, Chalke B, Lee Y . Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO to fuel conversion. Chem Sci. 2019; 10(27):6594-6603. PMC: 6625417. DOI: 10.1039/c9sc02369k. View

5.
Li D, Yu S, Jiang H . From UV to Near-Infrared Light-Responsive Metal-Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis. Adv Mater. 2018; 30(27):e1707377. DOI: 10.1002/adma.201707377. View