» Articles » PMID: 35177859

Metabolomic and Microbiome Profiling Reveals Personalized Risk Factors for Coronary Artery Disease

Abstract

Complex diseases, such as coronary artery disease (CAD), are often multifactorial, caused by multiple underlying pathological mechanisms. Here, to study the multifactorial nature of CAD, we performed comprehensive clinical and multi-omic profiling, including serum metabolomics and gut microbiome data, for 199 patients with acute coronary syndrome (ACS) recruited from two major Israeli hospitals, and validated these results in a geographically distinct cohort. ACS patients had distinct serum metabolome and gut microbial signatures as compared with control individuals, and were depleted in a previously unknown bacterial species of the Clostridiaceae family. This bacterial species was associated with levels of multiple circulating metabolites in control individuals, several of which have previously been linked to an increased risk of CAD. Metabolic deviations in ACS patients were found to be person specific with respect to their potential genetic or environmental origin, and to correlate with clinical parameters and cardiovascular outcomes. Moreover, metabolic aberrations in ACS patients linked to microbiome and diet were also observed to a lesser extent in control individuals with metabolic impairment, suggesting the involvement of these aberrations in earlier dysmetabolic phases preceding clinically overt CAD. Finally, a metabolomics-based model of body mass index (BMI) trained on the non-ACS cohort predicted higher-than-actual BMI when applied to ACS patients, and the excess BMI predictions independently correlated with both diabetes mellitus (DM) and CAD severity, as defined by the number of vessels involved. These results highlight the utility of the serum metabolome in understanding the basis of risk-factor heterogeneity in CAD.

Citing Articles

A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium.

Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q Life Med. 2025; 2(4):lnad033.

PMID: 40040784 PMC: 11879419. DOI: 10.1093/lifemedi/lnad033.


Improvement of glucocorticoid sensitivity and attenuation of pulmonary allergic reactions by exogenous supplementation with betaine in HDM and LPS-induced allergic mouse model.

Wang Q, He W, Zhou Y, Liu Y, Li X, Wang Y Clin Transl Allergy. 2025; 15(2):e70039.

PMID: 39921638 PMC: 11806522. DOI: 10.1002/clt2.70039.


Metabolomics in Atrial Fibrillation: Unlocking Novel Biomarkers and Pathways for Diagnosis, Prognosis, and Personalized Treatment.

Rohun J, Dudzik D, Raczak-Gutknecht J, Wabich E, Mlodzinski K, J Markuszewski M J Clin Med. 2025; 14(1.

PMID: 39797116 PMC: 11722095. DOI: 10.3390/jcm14010034.


The Hypothesis of Trace Elements Involvement in the Coronary Arteries Atherosclerotic Plaques' Location.

Urbanowicz T, Hanc A, Frackowiak J, Piecek J, Spasenenko I, Olasinska-Wisniewska A J Clin Med. 2024; 13(22).

PMID: 39598076 PMC: 11595170. DOI: 10.3390/jcm13226933.


Adrenic acid: A promising biomarker and therapeutic target (Review).

Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W Int J Mol Med. 2024; 55(2).

PMID: 39575474 PMC: 11611323. DOI: 10.3892/ijmm.2024.5461.


References
1.
Roth G, Huffman M, Moran A, Feigin V, Mensah G, Naghavi M . Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015; 132(17):1667-78. DOI: 10.1161/CIRCULATIONAHA.114.008720. View

2.
Wilkins J, Ning H, Berry J, Zhao L, Dyer A, Lloyd-Jones D . Lifetime risk and years lived free of total cardiovascular disease. JAMA. 2012; 308(17):1795-801. PMC: 3748966. DOI: 10.1001/jama.2012.14312. View

3.
Poulter N . Coronary heart disease is a multifactorial disease. Am J Hypertens. 1999; 12(10 Pt 2):92S-95S. DOI: 10.1016/s0895-7061(99)00163-6. View

4.
Gaziano J, Brotons C, Coppolecchia R, Cricelli C, Darius H, Gorelick P . Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet. 2018; 392(10152):1036-1046. PMC: 7255888. DOI: 10.1016/S0140-6736(18)31924-X. View

5.
Psychogios N, Hau D, Peng J, Guo A, Mandal R, Bouatra S . The human serum metabolome. PLoS One. 2011; 6(2):e16957. PMC: 3040193. DOI: 10.1371/journal.pone.0016957. View