» Articles » PMID: 35165721

Mitochondrial Oxidative Stress Contributes to the Pathological Aggregation and Accumulation of Tau Oligomers in Alzheimer's Disease

Overview
Journal Hum Mol Genet
Date 2022 Feb 15
PMID 35165721
Authors
Affiliations
Soon will be listed here.
Abstract

Tau oligomers (oTau) are thought to precede neurofibrillary tangle formation and likely represent one of the toxic species in disease. This study addresses whether mitochondrial reactive oxygen species (ROS) contribute to tau oligomer accumulation. First, we determined whether elevated oxidative stress correlates with aggregation of tau oligomers in the brain and platelets of human Alzheimer's disease (AD) patient, tauopathy mice, primary cortical neurons from tau mice and human trans-mitochondrial 'cybrid' (cytoplasmic hybrid) neuronal cells, whose mitochondria are derived from platelets of patients with sporadic AD- or mild cognitive impairment (MCI)-derived mitochondria. Increased formation of tau oligomers correlates with elevated ROS levels in the hippocampi of AD patients and tauopathy mice, AD- and MCI-derived mitochondria and AD and MCI cybrid cells. Furthermore, scavenging ROS by application of mito-TEMPO/2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride, a mitochondria-targeted antioxidant, not only inhibits the generation of mitochondrial ROS and rescues mitochondrial respiratory function but also robustly suppresses tau oligomer accumulation in MCI and AD cybrids as well as cortical neurons from tau mice. These studies provide substantial evidence that mitochondria-mediated oxidative stress contributes to tau oligomer formation and accumulation.

Citing Articles

The role of protein phosphorylation modifications mediated by iron metabolism regulatory networks in the pathogenesis of Alzheimer's disease.

Liu F, Yang S, Shi K, Li D, Song J, Sun L Front Aging Neurosci. 2025; 17:1540019.

PMID: 40071123 PMC: 11893871. DOI: 10.3389/fnagi.2025.1540019.


Mitochondrial genome and transcription of -like species reveal evolutionary aspects in protein-coding genes.

Shen X, Cao X, Huang X, Zhuo L, Yang H, Fan L IMA Fungus. 2025; 16:e138572.

PMID: 40052076 PMC: 11881002. DOI: 10.3897/imafungus.16.138572.


Phylogenetic Relationships of Three Species Based on Mitochondrial Genome Analysis.

Wang X, Guo Z, Tao J, Zhang G, Wang G, Wang Y Ecol Evol. 2025; 15(2):e70901.

PMID: 39944906 PMC: 11815223. DOI: 10.1002/ece3.70901.


Mitochondrial dysfunction in Alzheimer's disease: a key frontier for future targeted therapies.

Wang S, Liao Z, Zhang Q, Han X, Liu C, Wang J Front Immunol. 2025; 15:1484373.

PMID: 39877373 PMC: 11772192. DOI: 10.3389/fimmu.2024.1484373.


Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers.

Krzesinski B, Holub T, Gabani Z, Margittai M ACS Chem Neurosci. 2024; 16(2):171-180.

PMID: 39714208 PMC: 11740991. DOI: 10.1021/acschemneuro.4c00607.


References
1.
Tiernan C, Mufson E, Kanaan N, Counts S . Tau Oligomer Pathology in Nucleus Basalis Neurons During the Progression of Alzheimer Disease. J Neuropathol Exp Neurol. 2018; 77(3):246-259. PMC: 6251641. DOI: 10.1093/jnen/nlx120. View

2.
Miller S, Trimmer P, Parker Jr W, Davis R . Creation and characterization of mitochondrial DNA-depleted cell lines with "neuronal-like" properties. J Neurochem. 1996; 67(5):1897-907. DOI: 10.1046/j.1471-4159.1996.67051897.x. View

3.
Yu Q, Du F, Douglas J, Yu H, Yan S, Yan S . Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis. 2017; 59(1):223-239. PMC: 5935489. DOI: 10.3233/JAD-170283. View

4.
Fang D, Wang Y, Zhang Z, Du H, Yan S, Sun Q . Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Hum Mol Genet. 2015; 24(18):5198-210. PMC: 4550821. DOI: 10.1093/hmg/ddv241. View

5.
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E . Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002; 156(6):1051-63. PMC: 2173473. DOI: 10.1083/jcb.200108057. View