6.
Osada H, Toda E, Homma K, Guzman N, Nagai N, Ogawa M
. ADIPOR1 deficiency-induced suppression of retinal ELOVL2 and docosahexaenoic acid levels during photoreceptor degeneration and visual loss. Cell Death Dis. 2021; 12(5):458.
PMC: 8105316.
DOI: 10.1038/s41419-021-03741-5.
View
7.
Billmann M, Horn T, Fischer B, Sandmann T, Huber W, Boutros M
. A genetic interaction map of cell cycle regulators. Mol Biol Cell. 2016; 27(8):1397-407.
PMC: 4831891.
DOI: 10.1091/mbc.E15-07-0467.
View
8.
Fuhrmann S
. Wnt signaling in eye organogenesis. Organogenesis. 2009; 4(2):60-7.
PMC: 2613311.
DOI: 10.4161/org.4.2.5850.
View
9.
Zhang J, Wang C, Shen Y, Chen N, Wang L, Liang L
. A mutation in ADIPOR1 causes nonsyndromic autosomal dominant retinitis pigmentosa. Hum Genet. 2016; 135(12):1375-1387.
DOI: 10.1007/s00439-016-1730-2.
View
10.
Aldahmesh M, Nowilaty S, Alzahrani F, Al-Ebdi L, Mohamed J, Rajab M
. Posterior microphthalmos as a genetically heterogeneous condition that can be allelic to nanophthalmos. Arch Ophthalmol. 2011; 129(6):805-7.
DOI: 10.1001/archophthalmol.2011.129.
View
11.
Godinho G, Madeira C, Grangeia A, Neves-Cardoso P, Santos-Silva R, Brandao E
. A novel MFRP gene variant in a family with posterior microphthalmos, retinitis pigmentosa, foveoschisis, and foveal hypoplasia. Ophthalmic Genet. 2020; 41(5):474-479.
DOI: 10.1080/13816810.2020.1795888.
View
12.
Chekuri A, Sahu B, Chavali V, Voronchikhina M, Soto-Hermida A, Suk J
. Long-Term Effects of Gene Therapy in a Novel Mouse Model of Human -Associated Retinopathy. Hum Gene Ther. 2018; 30(5):632-650.
PMC: 6534092.
DOI: 10.1089/hum.2018.192.
View
13.
Papaleo F, Burdick M, Callicott J, Weinberger D
. Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry. 2013; 19(3):311-6.
PMC: 4845721.
DOI: 10.1038/mp.2013.133.
View
14.
Hawes N, Chang B, Hageman G, Nusinowitz S, Nishina P, Schneider B
. Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest Ophthalmol Vis Sci. 2000; 41(10):3149-57.
View
15.
Gordon W, Bazan N
. Visualization of [3H]docosahexaenoic acid trafficking through photoreceptors and retinal pigment epithelium by electron microscopic autoradiography. Invest Ophthalmol Vis Sci. 1993; 34(8):2402-11.
View
16.
Kautzmann M, Gordon W, Jun B, Do K, Matherne B, Fang Z
. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function. FASEB J. 2020; 34(1):912-929.
PMC: 6956729.
DOI: 10.1096/fj.201902359R.
View
17.
Collery R, Volberding P, Bostrom J, Link B, Besharse J
. Loss of Zebrafish Mfrp Causes Nanophthalmia, Hyperopia, and Accumulation of Subretinal Macrophages. Invest Ophthalmol Vis Sci. 2016; 57(15):6805-6814.
PMC: 5215506.
DOI: 10.1167/iovs.16-19593.
View
18.
Kameya S, Hawes N, Chang B, Heckenlively J, Naggert J, Nishina P
. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet. 2002; 11(16):1879-86.
DOI: 10.1093/hmg/11.16.1879.
View
19.
Rice D, Calandria J, Gordon W, Jun B, Zhou Y, Gelfman C
. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival. Nat Commun. 2015; 6:6228.
PMC: 4351799.
DOI: 10.1038/ncomms7228.
View
20.
Velez G, Tsang S, Tsai Y, Hsu C, Gore A, Abdelhakim A
. Gene Therapy Restores Mfrp and Corrects Axial Eye Length. Sci Rep. 2017; 7(1):16151.
PMC: 5701072.
DOI: 10.1038/s41598-017-16275-8.
View