Green Approaches for the Synthesis of Metal and Metal Oxide Nanoparticles Using Microbial and Plant Extracts
Overview
Authors
Affiliations
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Metal Oxide Nanocatalysts for the Electrochemical Detection of Propofol.
Ferrier D, Kiely J, Luxton R Micromachines (Basel). 2025; 16(2).
PMID: 40047559 PMC: 11857172. DOI: 10.3390/mi16020120.
Recent advances in the bench-to-bedside translation of cancer nanomedicines.
Liu Y, Zhang Y, Li H, Hu T Acta Pharm Sin B. 2025; 15(1):97-122.
PMID: 40041906 PMC: 11873642. DOI: 10.1016/j.apsb.2024.12.007.
Jeevanandam J, Goncalves M, Castro R, Gallo J, Banobre-Lopez M, Rodrigues J Mater Today Bio. 2025; 31:101520.
PMID: 39974818 PMC: 11835657. DOI: 10.1016/j.mtbio.2025.101520.
Ullah A, Ali F, Ullah F, Sadozai S, Khan S, Hussain S Pharmaceutics. 2025; 17(1).
PMID: 39861772 PMC: 11768782. DOI: 10.3390/pharmaceutics17010125.
Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation.
Faderin E, Iorkula T, Aworinde O, Awoyemi R, Awoyemi C, Acheampong E Med Oncol. 2025; 42(2):42.
PMID: 39789336 DOI: 10.1007/s12032-024-02598-w.