» Articles » PMID: 35131873

Autocrine Canonical Wnt Signaling Primes Noncanonical Signaling Through ROR1 in Metastatic Castration-Resistant Prostate Cancer

Abstract

Significance: This work provides fundamental insights into Wnt signaling and prostate cancer cell biology and indicates that a subset of prostate cancer driven by autocrine Wnt signaling is sensitive to Wnt synthesis inhibitors.

Citing Articles

Deciphering the Tumor Microenvironment in Prostate Cancer: A Focus on the Stromal Component.

Pakula H, Pederzoli F, Fanelli G, Nuzzo P, Rodrigues S, Loda M Cancers (Basel). 2024; 16(21).

PMID: 39518123 PMC: 11544791. DOI: 10.3390/cancers16213685.


Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota.

Chen L, Xu Y, Wang Y, Ren Y, Dong X, Wu P Mol Cancer. 2024; 23(1):229.

PMID: 39395984 PMC: 11470719. DOI: 10.1186/s12943-024-02137-1.


Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization.

Yu G, Corn P, Mak C, Liang X, Zhang M, Troncoso P Proc Natl Acad Sci U S A. 2024; 121(33):e2402903121.

PMID: 39102549 PMC: 11331113. DOI: 10.1073/pnas.2402903121.


Characterization of Wnt Signaling Pathway Aberrations in Metastatic Prostate Cancer.

Choi S, Pan E, Elliott A, Beltran H, Panian J, Jamieson C Mol Cancer Res. 2024; 22(10):920-931.

PMID: 38912907 PMC: 11850019. DOI: 10.1158/1541-7786.MCR-24-0395.


Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration.

Liu D, Du J, Xie H, Tian H, Lu L, Zhang C J Neuroinflammation. 2024; 21(1):75.

PMID: 38532410 PMC: 10967154. DOI: 10.1186/s12974-024-03068-w.


References
1.
Robinson D, Van Allen E, Wu Y, Schultz N, Lonigro R, Mosquera J . Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5):1215-1228. PMC: 4484602. DOI: 10.1016/j.cell.2015.05.001. View

2.
Sun Y, Campisi J, Higano C, Beer T, Porter P, Coleman I . Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012; 18(9):1359-68. PMC: 3677971. DOI: 10.1038/nm.2890. View

3.
Zhang L, Shay J . Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst. 2017; 109(8). PMC: 5963831. DOI: 10.1093/jnci/djw332. View

4.
Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell J . The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PLoS One. 2014; 9(4):e95058. PMC: 3995675. DOI: 10.1371/journal.pone.0095058. View

5.
Shourideh M, DePriest A, Mohler J, Wilson E, Koochekpour S . Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line. Prostate. 2016; 76(12):1067-77. DOI: 10.1002/pros.23190. View