Pakula H, Pederzoli F, Fanelli G, Nuzzo P, Rodrigues S, Loda M
Cancers (Basel). 2024; 16(21).
PMID: 39518123
PMC: 11544791.
DOI: 10.3390/cancers16213685.
Chen L, Xu Y, Wang Y, Ren Y, Dong X, Wu P
Mol Cancer. 2024; 23(1):229.
PMID: 39395984
PMC: 11470719.
DOI: 10.1186/s12943-024-02137-1.
Yu G, Corn P, Mak C, Liang X, Zhang M, Troncoso P
Proc Natl Acad Sci U S A. 2024; 121(33):e2402903121.
PMID: 39102549
PMC: 11331113.
DOI: 10.1073/pnas.2402903121.
Choi S, Pan E, Elliott A, Beltran H, Panian J, Jamieson C
Mol Cancer Res. 2024; 22(10):920-931.
PMID: 38912907
PMC: 11850019.
DOI: 10.1158/1541-7786.MCR-24-0395.
Liu D, Du J, Xie H, Tian H, Lu L, Zhang C
J Neuroinflammation. 2024; 21(1):75.
PMID: 38532410
PMC: 10967154.
DOI: 10.1186/s12974-024-03068-w.
Receptor tyrosine kinase-like orphan receptor 1 inhibitor strictinin exhibits anti-cancer properties against highly aggressive androgen-independent prostate cancer.
Sivaganesh V, Peethambaran B
Explor Target Antitumor Ther. 2024; 4(6):1188-1209.
PMID: 38213538
PMC: 10784114.
DOI: 10.37349/etat.2023.00192.
Brief Report: circRUNX1 as Potential Biomarker for Cancer Recurrence in EGFR Mutation-Positive Surgically Resected NSCLC.
Pedraz-Valdunciel C, Ito M, Giannoukakos S, Gimenez-Capitan A, Molina-Vila M, Rosell R
JTO Clin Res Rep. 2024; 4(12):100604.
PMID: 38162176
PMC: 10757026.
DOI: 10.1016/j.jtocrr.2023.100604.
The PENGUIN approach to reconstruct protein interactions at enhancer-promoter regions and its application to prostate cancer.
Armaos A, Serra F, Nunez-Carpintero I, Seo J, Baca S, Gustincich S
Nat Commun. 2023; 14(1):8084.
PMID: 38057321
PMC: 10700545.
DOI: 10.1038/s41467-023-43767-1.
Wnt Signaling and Therapeutic Resistance in Castration-Resistant Prostate Cancer.
Kishore C, Zi X
Curr Pharmacol Rep. 2023; 9(5):261-274.
PMID: 37994344
PMC: 10664806.
DOI: 10.1007/s40495-023-00333-z.
Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules.
Jameel M, Fatma H, Nadtochii L, Siddique H
Life (Basel). 2023; 13(10).
PMID: 37895357
PMC: 10608662.
DOI: 10.3390/life13101976.
HOXB3 drives WNT-activation associated progression in castration-resistant prostate cancer.
Zhu S, Yang Z, Zhang Z, Zhang H, Li S, Wu T
Cell Death Dis. 2023; 14(3):215.
PMID: 36973255
PMC: 10042887.
DOI: 10.1038/s41419-023-05742-y.
Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies.
Shi Z, Pang K, Wu Z, Dong Y, Hao L, Qin J
Signal Transduct Target Ther. 2023; 8(1):113.
PMID: 36906600
PMC: 10008648.
DOI: 10.1038/s41392-023-01383-x.
The role of Evi/Wntless in exporting Wnt proteins.
Wolf L, Boutros M
Development. 2023; 150(3).
PMID: 36763105
PMC: 10112924.
DOI: 10.1242/dev.201352.
WNT5a Signaling through ROR2 Activates the Hippo Pathway to Suppress YAP1 Activity and Tumor Growth.
Wang K, Ma F, Arai S, Wang Y, Varkaris A, Poluben L
Cancer Res. 2023; 83(7):1016-1030.
PMID: 36622276
PMC: 10073315.
DOI: 10.1158/0008-5472.CAN-22-3003.
Intravital imaging of Wnt/β-catenin and ATF2-dependent signalling pathways during tumour cell invasion and metastasis.
Stoletov K, Sanchez S, Gorrono I, Rabano M, Vivanco M, Kypta R
J Cell Sci. 2023; 136(3).
PMID: 36621522
PMC: 10022745.
DOI: 10.1242/jcs.260285.
Wntless expression promotes lineage plasticity and is associated with neuroendocrine prostate cancer.
DAbronzo L, Lombard A, Ning S, Armstong C, Leslie A, Sharifi M
Am J Clin Exp Urol. 2022; 10(5):299-310.
PMID: 36313205
PMC: 9605943.
Bioengineered BERA-Wnt5a siRNA Targeting Wnt5a/FZD2 Signaling Suppresses Advanced Prostate Cancer Tumor Growth and Enhances Enzalutamide Treatment.
Ning S, Liu C, Lou W, Yang J, Lombard A, DAbronzo L
Mol Cancer Ther. 2022; 21(10):1594-1607.
PMID: 35930737
PMC: 9547958.
DOI: 10.1158/1535-7163.MCT-22-0216.
Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer.
Koushyar S, Meniel V, Phesse T, Pearson H
Biomolecules. 2022; 12(2).
PMID: 35204808
PMC: 8869457.
DOI: 10.3390/biom12020309.