» Articles » PMID: 3513167

Anticodon-anticodon Interaction Induces Conformational Changes in TRNA: Yeast TRNAAsp, a Model for TRNA-mRNA Recognition

Overview
Specialty Science
Date 1986 Feb 1
PMID 3513167
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The crystal structure of yeast tRNAAsp enables visualization of an anticodon-anticodon interaction at the molecular level. Except for differences in the base stacking and twist, the overall conformation of the anticodon loop is quite similar to that of yeast tRNAPhe. The anticodon nucleotide triplets, GUC, of two symmetrically related molecules form a minihelix of the RNA type 11. The modified base m1G37 stacks on both sides of the triplets and enforces the continuity with the anticodon stems. Anticodon association induces long-range conformational changes in the region of the dihydrouracil and thymine loops. Experimental evidence includes the variation in the distribution of temperature factors between yeast tRNAPhe and tRNAAsp, the difference in the self-splitting patterns of tRNAAsp in crystal and solution, and the differential accessibility of cytidines to dimethyl sulfate in free and duplex tRNAAsp. These observations are linked to the fragility and disruption of the G.C Watson-Crick base pair at the corner of the molecule formed by the dihydrouracil and thymine loops.

Citing Articles

Self-Referential Encoding on Modules of Anticodon Pairs-Roots of the Biological Flow System.

Cardoso Guimaraes R Life (Basel). 2017; 7(2).

PMID: 28383509 PMC: 5492138. DOI: 10.3390/life7020016.


Essentials in the life process indicated by the self-referential genetic code.

Cardoso Guimaraes R Orig Life Evol Biosph. 2015; 44(4):269-77.

PMID: 25585798 DOI: 10.1007/s11084-014-9380-7.


A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme.

Bouchard P, Legault P RNA. 2014; 20(9):1451-64.

PMID: 25051972 PMC: 4138328. DOI: 10.1261/rna.046144.114.


Mechanism of enhanced mechanical stability of a minimal RNA kissing complex elucidated by nonequilibrium molecular dynamics simulations.

Chen A, Garcia A Proc Natl Acad Sci U S A. 2012; 109(24):E1530-9.

PMID: 22623526 PMC: 3386141. DOI: 10.1073/pnas.1119552109.


Eukaryotic initiator tRNA: finely tuned and ready for action.

Kolitz S, Lorsch J FEBS Lett. 2009; 584(2):396-404.

PMID: 19925799 PMC: 2795131. DOI: 10.1016/j.febslet.2009.11.047.


References
1.
QUIGLEY G, Teeter M, Rich A . Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978; 75(1):64-8. PMC: 411184. DOI: 10.1073/pnas.75.1.64. View

2.
Rubin J, Sundaralingam M . Lead ion binding and RNA chain hydrolysis in phenylalanine tRNA. J Biomol Struct Dyn. 1983; 1(3):639-46. DOI: 10.1080/07391102.1983.10507471. View

3.
Grosjean H, de Henau S, Crothers D . On the physical basis for ambiguity in genetic coding interactions. Proc Natl Acad Sci U S A. 1978; 75(2):610-4. PMC: 411305. DOI: 10.1073/pnas.75.2.610. View

4.
Sussman J, Holbrook S, Warrant R, Church G, Kim S . Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978; 123(4):607-30. DOI: 10.1016/0022-2836(78)90209-7. View

5.
Bruce A, Uhlenbeck O . Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res. 1978; 5(10):3665-77. PMC: 342702. DOI: 10.1093/nar/5.10.3665. View