» Articles » PMID: 35129718

The Potential of Advanced MR Techniques for Precision Radiotherapy of Glioblastoma

Overview
Journal MAGMA
Publisher Springer
Date 2022 Feb 7
PMID 35129718
Authors
Affiliations
Soon will be listed here.
Abstract

As microscopic tumour infiltration of glioblastomas is not visible on conventional magnetic resonance (MR) imaging, an isotropic expansion of 1-2 cm around the visible tumour is applied to define the clinical target volume for radiotherapy. An opportunity to visualize microscopic infiltration arises with advanced MR imaging. In this review, various advanced MR biomarkers are explored that could improve target volume delineation for radiotherapy of glioblastomas. Various physiological processes in glioblastomas can be visualized with different advanced MR techniques. Combining maps of oxygen metabolism (CMRO), relative cerebral blood volume (rCBV), vessel size imaging (VSI), and apparent diffusion coefficient (ADC) or amide proton transfer (APT) can provide early information on tumour infiltration and high-risk regions of future recurrence. Oxygen consumption is increased 6 months prior to tumour progression being visible on conventional MR imaging. However, presence of the Warburg effect, marking a switch from an infiltrative to a proliferative phenotype, could result in CMRO to appear unaltered in high-risk regions. Including information on biomarkers representing angiogenesis (rCBV and VSI) and hypercellularity (ADC) or protein concentration (APT) can omit misinterpretation due to the Warburg effect. Future research should evaluate these biomarkers in radiotherapy planning to explore the potential of advanced MR techniques to personalize target volume delineation with the aim to improve local tumour control and/or reduce radiation-induced toxicity.

Citing Articles

Nanotherapy of Glioblastoma-Where Hope Grows.

Grzegorzewski J, Michalak M, Woloszczuk M, Bulicz M, Majchrzak-Celinska A Int J Mol Sci. 2025; 26(5).

PMID: 40076445 PMC: 11898975. DOI: 10.3390/ijms26051814.


Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study.

Tang P, Mendez Romero A, Nout R, van Rij C, Slagter C, Swaak-Kragten A Eur Radiol Exp. 2024; 8(1):123.

PMID: 39477835 PMC: 11525355. DOI: 10.1186/s41747-024-00523-4.


Non-targeted effects of radiation therapy for glioblastoma.

Lerouge L, Ruch A, Pierson J, Thomas N, Barberi-Heyob M Heliyon. 2024; 10(10):e30813.

PMID: 38778925 PMC: 11109805. DOI: 10.1016/j.heliyon.2024.e30813.


Exosomal DNA: Role in Reflecting Tumor Genetic Heterogeneity, Diagnosis, and Disease Monitoring.

Xiang Z, Xie Q, Yu Z Cancers (Basel). 2024; 16(1).

PMID: 38201485 PMC: 10778000. DOI: 10.3390/cancers16010057.


Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery-A Preliminary Analysis and Case Report.

van Grinsven E, de Leeuw J, Siero J, Verhoeff J, van Zandvoort M, Cho J Cancers (Basel). 2023; 15(17).

PMID: 37686575 PMC: 10487230. DOI: 10.3390/cancers15174298.


References
1.
Cordova J, Shu H, Liang Z, Gurbani S, Cooper L, Holder C . Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol. 2016; 18(8):1180-9. PMC: 4933486. DOI: 10.1093/neuonc/now036. View

2.
Niyazi M, Brada M, Chalmers A, Combs S, Erridge S, Fiorentino A . ESTRO-ACROP guideline "target delineation of glioblastomas". Radiother Oncol. 2016; 118(1):35-42. DOI: 10.1016/j.radonc.2015.12.003. View

3.
Keil V, Gielen G, Pintea B, Baumgarten P, Datsi A, Hittatiya K . DCE-MRI in Glioma, Infiltration Zone and Healthy Brain to Assess Angiogenesis: A Biopsy Study. Clin Neuroradiol. 2021; 31(4):1049-1058. PMC: 8648693. DOI: 10.1007/s00062-021-01015-3. View

4.
Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz G . Evaluation of Glioblastoma Response to Therapy With Chemical Exchange Saturation Transfer. Int J Radiat Oncol Biol Phys. 2018; 101(3):713-723. DOI: 10.1016/j.ijrobp.2018.03.057. View

5.
Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A . Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444(7120):756-60. DOI: 10.1038/nature05236. View