» Articles » PMID: 35115906

Seizure Prediction in EEG Signals Using STFT and Domain Adaptation

Overview
Journal Front Neurosci
Date 2022 Feb 4
PMID 35115906
Authors
Affiliations
Soon will be listed here.
Abstract

Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between various subjects remains unsolved, resulting in a low conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed to extract the time-frequency features from raw EEG data, and an autoencoder is developed to map these features into high-dimensional space. By minimizing the inter-domain distance in the embedding space, this model learns the domain-invariant information, such that the generalization ability is improved by distribution alignment. Besides, to increase the feasibility of its application, this work mimics the data distribution under the clinical sampling situation and tests the model under this condition, which is the first study that adopts the assessment strategy. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can minimize the domain gap effectively compared with previous approaches.

Citing Articles

Predicting Epileptic Seizures Using EfficientNet-B0 and SVMs: A Deep Learning Methodology for EEG Analysis.

Saadoon Y, Khalil M, Battikh D Bioengineering (Basel). 2025; 12(2).

PMID: 40001629 PMC: 11851970. DOI: 10.3390/bioengineering12020109.


Cross-patient seizure prediction via continuous domain adaptation and similar sample replay.

Zhang Z, Liu A, Gao Y, Qian R, Chen X Cogn Neurodyn. 2025; 19(1):26.

PMID: 39830598 PMC: 11735696. DOI: 10.1007/s11571-024-10216-8.


Privacy-preserving multi-source semi-supervised domain adaptation for seizure prediction.

Liang D, Liu A, Wu L, Li C, Qian R, Chen X Cogn Neurodyn. 2024; 18(6):3521-3534.

PMID: 39712093 PMC: 11655995. DOI: 10.1007/s11571-023-10026-4.


Calibrating Deep Learning Classifiers for Patient-Independent Electroencephalogram Seizure Forecasting.

Shafiezadeh S, Duma G, Mento G, Danieli A, Antoniazzi L, Del Popolo Cristaldi F Sensors (Basel). 2024; 24(9).

PMID: 38732969 PMC: 11086106. DOI: 10.3390/s24092863.


A ResNet-LSTM hybrid model for predicting epileptic seizures using a pretrained model with supervised contrastive learning.

Lee D, Kim B, Kim T, Joe I, Chong J, Min K Sci Rep. 2024; 14(1):1319.

PMID: 38225340 PMC: 10789752. DOI: 10.1038/s41598-023-43328-y.


References
1.
Shahidi Zandi A, Tafreshi R, Javidan M, Dumont G . Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng. 2013; 60(5):1401-13. DOI: 10.1109/TBME.2012.2237399. View

2.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R . PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20. DOI: 10.1161/01.cir.101.23.e215. View

3.
Banerjee P, Filippi D, Hauser W . The descriptive epidemiology of epilepsy-a review. Epilepsy Res. 2009; 85(1):31-45. PMC: 2696575. DOI: 10.1016/j.eplepsyres.2009.03.003. View

4.
Li Y, Yu Z, Chen Y, Yang C, Li Y, Li X . Automatic Seizure Detection using Fully Convolutional Nested LSTM. Int J Neural Syst. 2020; 30(4):2050019. DOI: 10.1142/S0129065720500197. View

5.
Tsiouris K, Pezoulas V, Zervakis M, Konitsiotis S, Koutsouris D, Fotiadis D . A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med. 2018; 99:24-37. DOI: 10.1016/j.compbiomed.2018.05.019. View