» Articles » PMID: 35107857

Effects of Calcium Source, Inulin, and Lactose on Gut-Bone Associations in an Ovarierectomized Rat Model

Abstract

Scope: Osteoporosis poses a health challenge especially for postmenopausal women. This study aims to explore nutritional strategies to counteract bone demineralization in ovarierectomized (OVX) rats.

Methods And Results: OVX rats (n = 49) are fed with one of six different diets, where two different calcium sources (dairy calcium or calcium carbonate) are provided alone or in combination with either inulin (5%) or lactose (0.5%). In addition, a calcium-deficient diet is included. Calcium supplementation increases intestinal concentrations of short-chain fatty acids (SCFAs) and the abundance of fecal Acinetobacter and Propionibacterium. Accompanied with these effects, rats fed with calcium-fortified diets have higher bone mineral density, bone mineral content and femur mechanical strength, lower serum levels of bone markers, and lower expression of calcium absorption-related genes (transient receptor potential vanilloid type 6 (TRPV6), calcium-binding protein (CaBP) compared with control. Inulin supplementation results in a markedly increased production of intestinal SCFAs, a decreased intestinal pH, an increased abundance of Allobaculum and Bifidobacterium, and an increased expression of Trpv6. Inulin and lactose show beneficial effects on spine bone.

Conclusion: Calcium modulates gut microbiome composition and function. A pronounced effect of inulin on metabolic activity in the gastrointestinal tract is evident, and lactose supplementation decreases jejunal pH that might be associated with slightly enhanced bone mineralization.

Citing Articles

Prebiotics as modulators of colonic calcium and magnesium uptake.

Stumpff F, Manneck D Acta Physiol (Oxf). 2025; 241(2):e14262.

PMID: 39803707 PMC: 11726438. DOI: 10.1111/apha.14262.


From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management.

Hao L, Yan Y, Huang G, Li H Front Cell Infect Microbiol. 2024; 14:1416739.

PMID: 39386168 PMC: 11461468. DOI: 10.3389/fcimb.2024.1416739.


Nutritional therapy bridges the critical cut-off point for the closed-loop role of type 2 diabetes and bone homeostasis: A narrative review.

Zeng J, Qian Y, Yang J, Chen X, Fu C, Che Z Heliyon. 2024; 10(7):e28229.

PMID: 38689978 PMC: 11059410. DOI: 10.1016/j.heliyon.2024.e28229.


Nodakenin Ameliorates Ovariectomy-Induced Bone Loss by Regulating Gut Microbiota.

Liu C, Chen J, Wang Z, Li Y, Zhang Y, Li G Molecules. 2024; 29(6).

PMID: 38542877 PMC: 10976110. DOI: 10.3390/molecules29061240.


The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates.

Xie Z, He W, Gobbi A, Bertram H, Nielsen D BMC Microbiol. 2024; 24(1):83.

PMID: 38468200 PMC: 10926653. DOI: 10.1186/s12866-024-03235-2.


References
1.
Thogersen R, Castro-Mejia J, Sundekilde U, Hansen L, Hansen A, Nielsen D . Ingestion of an Inulin-Enriched Pork Sausage Product Positively Modulates the Gut Microbiome and Metabolome of Healthy Rats. Mol Nutr Food Res. 2018; 62(19):e1800608. DOI: 10.1002/mnfr.201800608. View

2.
Parvaneh K, Ebrahimi M, Sabran M, Karimi G, Hwei A, Abdul-Majeed S . Probiotics (Bifidobacterium longum) Increase Bone Mass Density and Upregulate Sparc and Bmp-2 Genes in Rats with Bone Loss Resulting from Ovariectomy. Biomed Res Int. 2015; 2015:897639. PMC: 4558422. DOI: 10.1155/2015/897639. View

3.
Chaplin A, Parra P, Laraichi S, Serra F, Palou A . Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Mol Nutr Food Res. 2015; 60(2):468-80. DOI: 10.1002/mnfr.201500480. View

4.
Villa C, Ward W, Comelli E . Gut microbiota-bone axis. Crit Rev Food Sci Nutr. 2015; 57(8):1664-1672. DOI: 10.1080/10408398.2015.1010034. View

5.
Pacifici R . Role of T cells in ovariectomy induced bone loss--revisited. J Bone Miner Res. 2012; 27(2):231-9. DOI: 10.1002/jbmr.1500. View