» Articles » PMID: 35105861

PPM1D Mutations Are Oncogenic Drivers of De Novo Diffuse Midline Glioma Formation

Abstract

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.

Citing Articles

Establishment of xenografts and methods to evaluate tumor burden for the three most frequent subclasses of pediatric-type diffuse high grade gliomas.

Balaguer-Lluna L, Olaciregui N, Aschero R, Resa-Pares C, Paco S, Cuadrado-Vilanova M J Neurooncol. 2025; .

PMID: 39961939 DOI: 10.1007/s11060-025-04954-w.


PPM1D activity promotes cellular transformation by preventing senescence and cell death.

Stoyanov M, Martinikova A, Matejkova K, Horackova K, Zemankova P, Burdova K Oncogene. 2024; 43(42):3081-3093.

PMID: 39237765 PMC: 11473410. DOI: 10.1038/s41388-024-03149-3.


Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies.

Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H Genes (Basel). 2024; 15(8).

PMID: 39202398 PMC: 11353413. DOI: 10.3390/genes15081038.


Primary thyroid nuclear protein in testis carcinoma: a case report and literature review.

Cao J, Liu Y, Lu C Gland Surg. 2024; 13(6):1116-1125.

PMID: 39015712 PMC: 11247582. DOI: 10.21037/gs-24-77.


The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models.

Furst L, Roussel E, Leung R, George A, Best S, Whittle J Biology (Basel). 2024; 13(6).

PMID: 38927304 PMC: 11200883. DOI: 10.3390/biology13060424.


References
1.
Love M, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. PMC: 4302049. DOI: 10.1186/s13059-014-0550-8. View

2.
Nikbakht H, Panditharatna E, Mikael L, Li R, Gayden T, Osmond M . Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun. 2016; 7:11185. PMC: 4823825. DOI: 10.1038/ncomms11185. View

3.
Mehta S, Huillard E, Kesari S, Maire C, Golebiowski D, Harrington E . The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell. 2011; 19(3):359-71. PMC: 3070398. DOI: 10.1016/j.ccr.2011.01.035. View

4.
Gallitto M, Lazarev S, Wasserman I, Stafford J, Wolden S, Terezakis S . Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv Radiat Oncol. 2019; 4(3):520-531. PMC: 6639749. DOI: 10.1016/j.adro.2019.03.009. View

5.
Wu G, Broniscer A, McEachron T, Lu C, Paugh B, Becksfort J . Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012; 44(3):251-3. PMC: 3288377. DOI: 10.1038/ng.1102. View