» Articles » PMID: 35095961

Characterization and Mapping of , and Broad-Spectrum Resistances to Turnip Mosaic Virus in , and the Development of Robust Methods for Utilizing Recalcitrant Genotyping Data

Overview
Journal Front Plant Sci
Date 2022 Jan 31
PMID 35095961
Authors
Affiliations
Soon will be listed here.
Abstract

Turnip mosaic virus (TuMV) induces disease in susceptible hosts, notably impacting cultivation of important crop species of the genus. Few effective plant viral disease management strategies exist with the majority of current approaches aiming to mitigate the virus indirectly through control of aphid vector species. Multiple sources of genetic resistance to TuMV have been identified previously, although the majority are strain-specific and have not been exploited commercially. Here, two lines (TWBJ14 and TWBJ20) with resistance against important TuMV isolates (UK 1, vVIR24, CDN 1, and GBR 6) representing the most prevalent pathotypes of TuMV (1, 3, 4, and 4, respectively) and known to overcome other sources of resistance, have been identified and characterized. Genetic inheritance of both resistances was determined to be based on a recessive two-gene model. Using both single nucleotide polymorphism (SNP) array and genotyping by sequencing (GBS) methods, quantitative trait loci (QTL) analyses were performed using first backcross (BC) genetic mapping populations segregating for TuMV resistance. Pairs of statistically significant TuMV resistance-associated QTLs with additive interactive effects were identified on chromosomes A03 and A06 for both TWBJ14 and TWBJ20 material. Complementation testing between these lines indicated that one resistance-linked locus was shared. Following established resistance gene nomenclature for recessive TuMV resistance genes, these new resistance-associated loci have been termed (chromosome A06, TWBJ14, and TWBJ20), (A03, TWBJ14), and (A03, TWBJ20). Genotyping by sequencing data investigated in parallel to robust SNP array data was highly suboptimal, with informative data not established for key BC parental samples. This necessitated careful consideration and the development of new methods for processing compromised data. Using reductive screening of potential markers according to allelic variation and the recombination observed across BC samples genotyped, compromised GBS data was rendered functional with near-equivalent QTL outputs to the SNP array data. The reductive screening strategy employed here offers an alternative to methods relying upon imputation or artificial correction of genotypic data and may prove effective for similar biparental QTL mapping studies.

References
1.
Robaglia C, Caranta C . Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 2005; 11(1):40-5. DOI: 10.1016/j.tplants.2005.11.004. View

2.
Qian W, Zhang S, Zhang S, Li F, Zhang H, Wu J . Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theor Appl Genet. 2012; 126(1):179-88. DOI: 10.1007/s00122-012-1972-x. View

3.
Technow F, Gerke J . Parent-progeny imputation from pooled samples for cost-efficient genotyping in plant breeding. PLoS One. 2017; 12(12):e0190271. PMC: 5741258. DOI: 10.1371/journal.pone.0190271. View

4.
Greer S, Hackenberg D, Gegas V, Mitrousia G, Edwards D, Batley J . Quantitative Trait Locus Mapping of Resistance to Turnip Yellows Virus in and and Introgression of These Resistances by Resynthesis Into Allotetraploid Plants for Deployment in . Front Plant Sci. 2021; 12:781385. PMC: 8703028. DOI: 10.3389/fpls.2021.781385. View

5.
Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B . The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet. 2016; 48(10):1225-32. DOI: 10.1038/ng.3657. View