» Articles » PMID: 35089780

Multi-principal Elemental Intermetallic Nanoparticles Synthesized Via a Disorder-to-order Transition

Abstract

Nanoscale multi-principal element intermetallics (MPEIs) may provide a broad and tunable compositional space of active, high-surface area materials with potential applications such as catalysis and magnetics. However, MPEI nanoparticles are challenging to fabricate because of the tendency of the particles to grow/agglomerate or phase-separated during annealing. Here, we demonstrate a disorder-to-order phase transition approach that enables the synthesis of ultrasmall (4 to 5 nm) and stable MPEI nanoparticles (up to eight elements). We apply just 5 min of Joule heating to promote the phase transition of the nanoparticles into L1 intermetallic structure, which is then preserved by rapidly cooling. This disorder-to-order transition results in phase-stable nanoscale MPEIs with compositions (e.g., PtPdAuFeCoNiCuSn), which have not been previously attained by traditional synthetic methods. This synthesis strategy offers a new paradigm for developing previously unexplored MPEI nanoparticles by accessing a nanoscale-size regime and novel compositions with potentially broad applications.

Citing Articles

Ultrafast Synthesis of IrB Nanocrystals for Efficient Chlorine and Hydrogen Evolution Reactions in Saline Water.

Liu T, Chen Z, Liu S, Wang P, Pu Z, Zhang G Angew Chem Int Ed Engl. 2024; 64(5):e202414021.

PMID: 39652310 PMC: 11773112. DOI: 10.1002/anie.202414021.


The role of surface substitution in the atomic disorder-to-order phase transition in multi-component core-shell structures.

Zhang W, Li F, Li Y, Song A, Yang K, Wu D Nat Commun. 2024; 15(1):9762.

PMID: 39528463 PMC: 11555081. DOI: 10.1038/s41467-024-54104-5.


Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem.

Hao J, Wang T, Yu R, Cai J, Gao G, Zhuang Z Nat Commun. 2024; 15(1):9020.

PMID: 39424628 PMC: 11489584. DOI: 10.1038/s41467-024-53427-7.


High-entropy intermetallics: emerging inorganic materials for designing high-performance catalysts.

Nakaya Y, Furukawa S Chem Sci. 2024; 15(32):12644-12666.

PMID: 39148764 PMC: 11323319. DOI: 10.1039/d3sc03897a.


A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals.

Wu C, Hsiao Y, Chen Y, Lin K, Lee T, Chi C Sci Adv. 2024; 10(30):eadl3693.

PMID: 39058768 PMC: 11277269. DOI: 10.1126/sciadv.adl3693.


References
1.
Chen Y, Egan G, Wan J, Zhu S, Jacob R, Zhou W . Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat Commun. 2016; 7:12332. PMC: 4990634. DOI: 10.1038/ncomms12332. View

2.
Yang Y, Chen C, Scott M, Ophus C, Xu R, Pryor A . Deciphering chemical order/disorder and material properties at the single-atom level. Nature. 2017; 542(7639):75-79. DOI: 10.1038/nature21042. View

3.
Chen P, Liu X, Hedrick J, Xie Z, Wang S, Lin Q . Polyelemental nanoparticle libraries. Science. 2016; 352(6293):1565-9. DOI: 10.1126/science.aaf8402. View

4.
Wang Q, Zhao Z, Zhang Z, Feng T, Zhong R, Xu H . Sub-3 nm Intermetallic Ordered PtIn Clusters for Oxygen Reduction Reaction. Adv Sci (Weinh). 2020; 7(2):1901279. PMC: 6974934. DOI: 10.1002/advs.201901279. View

5.
Zhang W, Yang Y, Huang B, Lv F, Wang K, Li N . Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Adv Mater. 2019; 31(15):e1805833. DOI: 10.1002/adma.201805833. View