» Articles » PMID: 35087771

Cerebral Blood Flow Monitoring in High-Risk Fetal and Neonatal Populations

Overview
Journal Front Pediatr
Specialty Pediatrics
Date 2022 Jan 28
PMID 35087771
Authors
Affiliations
Soon will be listed here.
Abstract

Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF) across a range of arterial blood pressures. Cerebral autoregulation (CA) is a developmental process that reaches maturity around term gestation and can be monitored prenatally with both Doppler ultrasound and magnetic resonance imaging (MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF monitoring techniques as well as their application to both fetal and neonatal populations at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm and those with hypoxic-ischemic encephalopathy. We conclude the review with insights into the future directions in this field with an emphasis on collaborative science and precision medicine approaches.

Citing Articles

A Multiscale Mathematical Model for Fetal Gas Transport and Regulatory Systems During Second Half of Pregnancy.

Van Willigen B, van der Hout-van der Jagt M, Huberts W, van de Vosse F Int J Numer Method Biomed Eng. 2024; 41(1):e3881.

PMID: 39625422 PMC: 11661441. DOI: 10.1002/cnm.3881.


Postnatal Cerebral Hemodynamics and Placental Vascular Malperfusion Lesions in Neonates With Congenital Heart Disease.

Leon R, Bitar L, Sharma K, Mir I, Chalak L Pediatr Neurol. 2024; 156:72-78.

PMID: 38733857 PMC: 11269165. DOI: 10.1016/j.pediatrneurol.2024.03.028.


Sex, hormones and cerebrovascular function: from development to disorder.

Collignon A, Dion-Albert L, Menard C, Coelho-Santos V Fluids Barriers CNS. 2024; 21(1):2.

PMID: 38178239 PMC: 10768274. DOI: 10.1186/s12987-023-00496-3.


3D doppler ultrasound imaging of cerebral blood flow for assessment of neonatal hypoxic-ischemic brain injury in mice.

Shen G, Sanchez K, Hu S, Zhao Z, Zhang L, Ma Q PLoS One. 2023; 18(5):e0285434.

PMID: 37159455 PMC: 10168578. DOI: 10.1371/journal.pone.0285434.


Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now?.

Martini S, Thewissen L, Austin T, Sortica da Costa C, de Boode W, Dempsey E Pediatr Res. 2023; 96(4):884-895.

PMID: 36997690 DOI: 10.1038/s41390-023-02574-6.


References
1.
Cahill L, Hoggarth J, Lerch J, Seed M, Macgowan C, Sled J . Fetal brain sparing in a mouse model of chronic maternal hypoxia. J Cereb Blood Flow Metab. 2017; 39(6):1172-1184. PMC: 6547196. DOI: 10.1177/0271678X17750324. View

2.
Faraci F, Brian Jr J . Nitric oxide and the cerebral circulation. Stroke. 1994; 25(3):692-703. DOI: 10.1161/01.str.25.3.692. View

3.
Brown D, Picot P, Naeini J, Springett R, Delpy D, Lee T . Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets. Pediatr Res. 2002; 51(5):564-70. DOI: 10.1203/00006450-200205000-00004. View

4.
Gregory A, Kohl B . Con: near-infrared spectroscopy has not proven its clinical utility as a standard monitor in cardiac surgery. J Cardiothorac Vasc Anesth. 2013; 27(2):390-4. DOI: 10.1053/j.jvca.2012.11.010. View

5.
Sorensen A, Hutter J, Seed M, Grant P, Gowland P . T2*-weighted placental MRI: basic research tool or emerging clinical test for placental dysfunction?. Ultrasound Obstet Gynecol. 2019; 55(3):293-302. DOI: 10.1002/uog.20855. View