Biomarker Selection and a Prospective Metabolite-based Machine Learning Diagnostic for Lyme Disease
Authors
Affiliations
We provide a pipeline for data preprocessing, biomarker selection, and classification of liquid chromatography-mass spectrometry (LCMS) serum samples to generate a prospective diagnostic test for Lyme disease. We utilize tools of machine learning (ML), e.g., sparse support vector machines (SSVM), iterative feature removal (IFR), and k-fold feature ranking to select several biomarkers and build a discriminant model for Lyme disease. We report a 98.13% test balanced success rate (BSR) of our model based on a sequestered test set of LCMS serum samples. The methodology employed is general and can be readily adapted to other LCMS, or metabolomics, data sets.
Artificial Intelligence in Metabolomics: A Current Review.
Chi J, Shu J, Li M, Mudappathi R, Jin Y, Lewis F Trends Analyt Chem. 2024; 178.
PMID: 39071116 PMC: 11271759. DOI: 10.1016/j.trac.2024.117852.
Lyme rashes disease classification using deep feature fusion technique.
Ali G, Anwar M, Nauman M, Faheem M, Rashid J Skin Res Technol. 2023; 29(11):e13519.
PMID: 38009027 PMC: 10628356. DOI: 10.1111/srt.13519.
Wearable chemical sensors for biomarker discovery in the omics era.
Sempionatto J, Lasalde-Ramirez J, Mahato K, Wang J, Gao W Nat Rev Chem. 2023; 6(12):899-915.
PMID: 37117704 PMC: 9666953. DOI: 10.1038/s41570-022-00439-w.
Using machine learning to determine the time of exposure to infection by a respiratory pathogen.
Sharma K, Aminian M, Ghosh T, Liu X, Kirby M Sci Rep. 2023; 13(1):5340.
PMID: 37005391 PMC: 10067823. DOI: 10.1038/s41598-023-30306-7.
Precision Medicine Approaches with Metabolomics and Artificial Intelligence.
Barberis E, Khoso S, Sica A, Falasca M, Gennari A, Dondero F Int J Mol Sci. 2022; 23(19).
PMID: 36232571 PMC: 9569627. DOI: 10.3390/ijms231911269.