» Articles » PMID: 35087163

Biomarker Selection and a Prospective Metabolite-based Machine Learning Diagnostic for Lyme Disease

Overview
Journal Sci Rep
Specialty Science
Date 2022 Jan 28
PMID 35087163
Authors
Affiliations
Soon will be listed here.
Abstract

We provide a pipeline for data preprocessing, biomarker selection, and classification of liquid chromatography-mass spectrometry (LCMS) serum samples to generate a prospective diagnostic test for Lyme disease. We utilize tools of machine learning (ML), e.g., sparse support vector machines (SSVM), iterative feature removal (IFR), and k-fold feature ranking to select several biomarkers and build a discriminant model for Lyme disease. We report a 98.13% test balanced success rate (BSR) of our model based on a sequestered test set of LCMS serum samples. The methodology employed is general and can be readily adapted to other LCMS, or metabolomics, data sets.

Citing Articles

Artificial Intelligence in Metabolomics: A Current Review.

Chi J, Shu J, Li M, Mudappathi R, Jin Y, Lewis F Trends Analyt Chem. 2024; 178.

PMID: 39071116 PMC: 11271759. DOI: 10.1016/j.trac.2024.117852.


Lyme rashes disease classification using deep feature fusion technique.

Ali G, Anwar M, Nauman M, Faheem M, Rashid J Skin Res Technol. 2023; 29(11):e13519.

PMID: 38009027 PMC: 10628356. DOI: 10.1111/srt.13519.


Wearable chemical sensors for biomarker discovery in the omics era.

Sempionatto J, Lasalde-Ramirez J, Mahato K, Wang J, Gao W Nat Rev Chem. 2023; 6(12):899-915.

PMID: 37117704 PMC: 9666953. DOI: 10.1038/s41570-022-00439-w.


Using machine learning to determine the time of exposure to infection by a respiratory pathogen.

Sharma K, Aminian M, Ghosh T, Liu X, Kirby M Sci Rep. 2023; 13(1):5340.

PMID: 37005391 PMC: 10067823. DOI: 10.1038/s41598-023-30306-7.


Precision Medicine Approaches with Metabolomics and Artificial Intelligence.

Barberis E, Khoso S, Sica A, Falasca M, Gennari A, Dondero F Int J Mol Sci. 2022; 23(19).

PMID: 36232571 PMC: 9569627. DOI: 10.3390/ijms231911269.


References
1.
Dieterle F, Ross A, Schlotterbeck G, Senn H . Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006; 78(13):4281-90. DOI: 10.1021/ac051632c. View

2.
Chambers M, MacLean B, Burke R, Amodei D, Ruderman D, Neumann S . A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012; 30(10):918-20. PMC: 3471674. DOI: 10.1038/nbt.2377. View

3.
Mahadevan S, Shah S, Marrie T, Slupsky C . Analysis of metabolomic data using support vector machines. Anal Chem. 2008; 80(19):7562-70. DOI: 10.1021/ac800954c. View

4.
Ghosh T, Zhang W, Ghosh D, Kechris K . Predictive Modeling for Metabolomics Data. Methods Mol Biol. 2020; 2104:313-336. PMC: 7423323. DOI: 10.1007/978-1-0716-0239-3_16. View

5.
Veselkov K, Vingara L, Masson P, Robinette S, Want E, Li J . Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem. 2011; 83(15):5864-72. DOI: 10.1021/ac201065j. View