» Articles » PMID: 35057058

Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem for Combined Antibiofilm Therapy

Overview
Journal Pharmaceutics
Publisher MDPI
Date 2022 Jan 21
PMID 35057058
Authors
Affiliations
Soon will be listed here.
Abstract

A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from a unique magnetic-responsive nanocarrier for a combination therapy against biofilm. The design of the nanosystem is based on antibiotic-loaded mesoporous silica nanoparticles (MSNs) externally functionalized with a thermo-responsive polymer capping layer, and decorated in the outermost surface with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are able to generate heat upon application of an alternating magnetic field (AMF), reaching the temperature needed to induce a change in the polymer conformation from linear to globular, therefore triggering pore uncapping and the antibiotic cargo release. The microbiological assays indicated that exposure of biofilms to 200 µg/mL of the nanosystem and the application of an AMF (202 kHz, 30 mT) decreased the number of viable bacteria by 4 log units compared with the control. The results of the present study show that combined hyperthermia and antibiotic treatment is a promising approach for the effective management of biofilm-associated infections.

Citing Articles

4D Printing: The Development of Responsive Materials Using 3D-Printing Technology.

Edmundo Antezana P, Municoy S, Ostapchuk G, Catalano P, Hardy J, Evelson P Pharmaceutics. 2023; 15(12).

PMID: 38140084 PMC: 10747900. DOI: 10.3390/pharmaceutics15122743.


Organically Modified Mesoporous Silica Nanoparticles against Bacterial Resistance.

Colilla M, Vallet-Regi M Chem Mater. 2023; 35(21):8788-8805.

PMID: 38027542 PMC: 10653088. DOI: 10.1021/acs.chemmater.3c02192.


Iron Nanoparticles Open Up New Directions for Promoting Healing in Chronic Wounds in the Context of Bacterial Infection.

Lu Z, Yu D, Nie F, Wang Y, Chong Y Pharmaceutics. 2023; 15(9).

PMID: 37765295 PMC: 10537899. DOI: 10.3390/pharmaceutics15092327.


The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery.

Kaykanat S, Uguz A Biomicrofluidics. 2023; 17(2):021502.

PMID: 37153864 PMC: 10162024. DOI: 10.1063/5.0130769.


Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Mamun A, Sabantina L Polymers (Basel). 2023; 15(8).

PMID: 37112049 PMC: 10143376. DOI: 10.3390/polym15081902.


References
1.
Johannsen M, Thiesen B, Wust P, Jordan A . Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia. 2010; 26(8):790-5. DOI: 10.3109/02656731003745740. View

2.
OToole A, Ricker E, Nuxoll E . Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling. 2015; 31(8):665-75. PMC: 4617618. DOI: 10.1080/08927014.2015.1083985. View

3.
Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X . Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics. 2020; 10(8):3793-3815. PMC: 7069093. DOI: 10.7150/thno.40805. View

4.
Zharov V, Mercer K, Galitovskaya E, Smeltzer M . Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2005; 90(2):619-27. PMC: 1367066. DOI: 10.1529/biophysj.105.061895. View

5.
Richardson I, Sturtevant R, Heung M, Solomon M, Younger J, VanEpps J . Hemodialysis Catheter Heat Transfer for Biofilm Prevention and Treatment. ASAIO J. 2015; 62(1):92-9. PMC: 4714858. DOI: 10.1097/MAT.0000000000000300. View