» Articles » PMID: 35055847

Polyandrous Mexican Fruit Flies: Second Male Paternity and Biological Attributes of Transgenic Strains

Overview
Journal Insects
Specialty Biology
Date 2022 Jan 21
PMID 35055847
Authors
Affiliations
Soon will be listed here.
Abstract

(Diptera: Tephritidae), is a damaging agricultural pest. Currently, the Sterile Insect Technique (SIT) is used as part of its control. The SIT consists of the mass-rearing, sterilization, and release of insects in target areas. Sterile males mate with wild females, and prevent them from laying fertile eggs. However, even if females mate with sterile males, they can then remate with a second male. If this second male is wild, then this could reduce the efficiency of the SIT by producing viable offspring. The amount of progeny produced by second males (P2 values) for is unknown. Here, we evaluated the biological attributes, mating competitiveness, and the proportion of male paternity gained by the second male, using strains that carry fluorescent marker genes and can be potentially used to develop transgenic sexing strains. Furthermore, the transgenic strains were irradiated, to test their ability to induce sterility in females. We found that the 443-G strain had significantly higher larval survival than the 419-R strain. No significant difference was found between the two strains in their mating probability with wild females. We found P2 values between 67 and 74% for the 419-R and the 443-G strain, respectively. Second male sperm precedence only decreased slightly after 12 days, suggesting that sperm from the first and second male is not mixing with time, but rather the second male's sperm prevails. Furthermore, sterile 443-G males induced significantly higher sterility in females than sterile males from the 419-R strain. The apparent lower ability of the 443-G strain to inhibit female remating should be further investigated. Knowledge of the pre and postcopulatory performance of transgenic strains will help in understanding their potential for control.

Citing Articles

Fertility signalling games: should males obey the signal?.

Kovalov V, Kokko H Philos Trans R Soc Lond B Biol Sci. 2023; 378(1876):20210499.

PMID: 36934751 PMC: 10024994. DOI: 10.1098/rstb.2021.0499.

References
1.
Meza J, Nirmala X, Zimowska G, Zepeda-Cisneros C, Handler A . Development of transgenic strains for the biological control of the Mexican fruit fly, Anastrepha ludens. Genetica. 2010; 139(1):53-62. DOI: 10.1007/s10709-010-9484-6. View

2.
Manier M, Belote J, Berben K, Novikov D, Stuart W, Pitnick S . Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science. 2010; 328(5976):354-7. DOI: 10.1126/science.1187096. View

3.
Ant T, Koukidou M, Rempoulakis P, Gong H, Economopoulos A, Vontas J . Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol. 2012; 10:51. PMC: 3398856. DOI: 10.1186/1741-7007-10-51. View

4.
Ramirez-Santos E, Rendon P, Ruiz-Montoya L, Toledo J, Liedo P . Effect of Irradiation Doses on Sterility and Biological Security in a Genetically Modified Strain of the Mediterranean Fruit Fly (Diptera: Tephritidae). J Econ Entomol. 2017; 110(4):1483-1494. DOI: 10.1093/jee/tox119. View

5.
Carey J, Liedo P, Muller H, Wang J, Senturk D, Harshman L . Biodemography of a long-lived tephritid: reproduction and longevity in a large cohort of female Mexican fruit flies, Anastrepha ludens. Exp Gerontol. 2005; 40(10):793-800. PMC: 2441917. DOI: 10.1016/j.exger.2005.07.013. View