» Articles » PMID: 35050223

Modeling Human Cardiac Arrhythmias: Insights from Zebrafish

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.

Citing Articles

Electron paramagnetic resonance spectroscopy for analysis of free radicals in zebrafish.

Sabetghadam Moghadam M, Wiens E, Gauvrit S, Sammynaiken R, Collins M PLoS One. 2025; 20(2):e0318212.

PMID: 39982956 PMC: 11844908. DOI: 10.1371/journal.pone.0318212.


Zebrafish as a Model System for Brugada Syndrome.

Verkerk L, Verkerk A, Wilders R Rev Cardiovasc Med. 2024; 25(9):313.

PMID: 39355588 PMC: 11440409. DOI: 10.31083/j.rcm2509313.


Loss of developmentally derived Irf8+ macrophages promotes hyperinnervation and arrhythmia in the adult zebrafish heart.

Paquette S, Oduor C, Gaulke A, Stefan S, Bronk P, Dafonseca V bioRxiv. 2024; .

PMID: 38659956 PMC: 11042273. DOI: 10.1101/2024.04.17.589909.


Zebrafish as a Model for Cardiovascular and Metabolic Disease: The Future of Precision Medicine.

Angom R, Nakka N Biomedicines. 2024; 12(3).

PMID: 38540306 PMC: 10968160. DOI: 10.3390/biomedicines12030693.


Zebrafish () as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes.

Hussen E, Aakel N, Shaito A, Al-Asmakh M, Abou-Saleh H, Zakaria Z Int J Mol Sci. 2024; 25(1).

PMID: 38203365 PMC: 10779276. DOI: 10.3390/ijms25010194.


References
1.
Kleinhans D, Lecaudey V . Standardized mounting method of (zebrafish) embryos using a 3D-printed stamp for high-content, semi-automated confocal imaging. BMC Biotechnol. 2019; 19(1):68. PMC: 6805687. DOI: 10.1186/s12896-019-0558-y. View

2.
Jimenez-Amilburu V, Rasouli S, Staudt D, Nakajima H, Chiba A, Mochizuki N . In Vivo Visualization of Cardiomyocyte Apicobasal Polarity Reveals Epithelial to Mesenchymal-like Transition during Cardiac Trabeculation. Cell Rep. 2016; 17(10):2687-2699. DOI: 10.1016/j.celrep.2016.11.023. View

3.
Benson D, Silberbach G, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S . Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999; 104(11):1567-73. PMC: 409866. DOI: 10.1172/JCI8154. View

4.
von der Heyde B, Emmanouilidou A, Mazzaferro E, Vicenzi S, Hoijer I, Klingstrom T . Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach. Sci Rep. 2020; 10(1):11831. PMC: 7367351. DOI: 10.1038/s41598-020-68567-1. View

5.
Abramochkin D, Hassinen M, Vornanen M . Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K current (I) are expressed in zebrafish (Danio rerio) heart. Pflugers Arch. 2018; 470(12):1753-1764. DOI: 10.1007/s00424-018-2193-1. View