» Articles » PMID: 35042820

Lipid Membranes Modulate the Activity of RNA Through Sequence-dependent Interactions

Overview
Specialty Science
Date 2022 Jan 19
PMID 35042820
Authors
Affiliations
Soon will be listed here.
Abstract

RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization platforms, introducing a mechanism for riboregulation. The activity of R3C ribozyme can be modified by the presence of lipid membranes, with direct RNA-lipid interactions dependent on RNA nucleotide content, base pairing, and length. In particular, the presence of guanine in short RNAs is crucial for RNA-lipid interactions, and G-quadruplex formation further promotes lipid binding. Lastly, by artificially modifying the R3C substrate sequence to enhance membrane binding, we generated a lipid-sensitive ribozyme reaction with riboswitch-like behavior. These findings introduce RNA-lipid interactions as a tool for developing synthetic riboswitches and RNA-based lipid biosensors and bear significant implications for RNA world scenarios for the origin of life.

Citing Articles

Effects of lipid membranes on RNA catalytic activity and stability.

Czerniak T, Saenz J Biol Cell. 2025; 117(2):e202400115.

PMID: 40012228 PMC: 11865690. DOI: 10.1111/boc.202400115.


The role of RNA structural motifs in RNA-lipid raft interaction.

Manka R, Sapon K, Zaziablo J, Janas T, Czogalla A, Janas T Sci Rep. 2025; 15(1):6777.

PMID: 40000734 PMC: 11861254. DOI: 10.1038/s41598-025-91093-x.


RNA Order Regulates Its Interactions with Zwitterionic Lipid Bilayers.

Singh A, Prabhu J, Vanni S Nano Lett. 2024; 25(1):77-83.

PMID: 39719269 PMC: 11719626. DOI: 10.1021/acs.nanolett.4c04153.


The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization.

Sztacho M, cervenka J, Salovska B, Antiga L, Hoboth P, Hozak P PLoS Genet. 2024; 20(12):e1011462.

PMID: 39621780 PMC: 11668513. DOI: 10.1371/journal.pgen.1011462.


Multifocal lipid membrane characterization by combination of DAS-deconvolution and anisotropy.

Ito N, Watanabe N, Okamoto Y, Umakoshi H Biophys J. 2024; 123(23):4135-4146.

PMID: 39511892 PMC: 11628859. DOI: 10.1016/j.bpj.2024.11.005.


References
1.
Lu D, Rhodes D . Binding of phosphorothioate oligonucleotides to zwitterionic liposomes. Biochim Biophys Acta. 2002; 1563(1-2):45-52. DOI: 10.1016/s0005-2736(02)00384-x. View

2.
Uhrikova D, Hanulova M, Funari S, Khusainova R, Sersen F, Balgavy P . The structure of DNA-DOPC aggregates formed in presence of calcium and magnesium ions: a small-angle synchrotron X-ray diffraction study. Biochim Biophys Acta. 2005; 1713(1):15-28. DOI: 10.1016/j.bbamem.2005.05.006. View

3.
Kharakoz D, Khusainova R, Gorelov A, Dawson K . Stoichiometry of dipalmitoylphosphatidylcholine-DNA interaction in the presence of Ca2+: a temperature-scanning ultrasonic study. FEBS Lett. 1999; 446(1):27-9. DOI: 10.1016/s0014-5793(99)00165-9. View

4.
Gromelski S, Brezesinski G . DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. Langmuir. 2006; 22(14):6293-301. DOI: 10.1021/la0531796. View

5.
Behlen L, Sampson J, Uhlenbeck O . An ultraviolet light-induced crosslink in yeast tRNA(Phe). Nucleic Acids Res. 1992; 20(15):4055-9. PMC: 334087. DOI: 10.1093/nar/20.15.4055. View