» Articles » PMID: 35019699

Positive Effect of Lactobacillus Acidophilus EG004 on Cognitive Ability of Healthy Mice by Fecal Microbiome Analysis Using Full-Length 16S-23S RRNA Metagenome Sequencing

Overview
Specialty Microbiology
Date 2022 Jan 12
PMID 35019699
Authors
Affiliations
Soon will be listed here.
Abstract

Evidence for the concept of the "gut-brain axis" (GBA) has risen. Many types of research demonstrated the mechanism of the GBA and the effect of probiotic intake. Although many studies have been reported, most were focused on neurodegenerative disease and, it is still not clear what type of bacterial strains have positive effects. We designed an experiment to discover a strain that positively affects brain function, which can be recognized through changes in cognitive processes using healthy mice. The experimental group consisted of a control group and three probiotic consumption groups, namely, Lactobacillus acidophilus, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus. Three experimental groups fed probiotics showed an improved cognitive ability by cognitive-behavioral tests, and the group fed on L. acidophilus showed the highest score. To provide an understanding of the altered microbial composition effect on the brain, we performed full 16S-23S rRNA sequencing using Nanopore, and operational taxonomic units (OTUs) were identified at species level. In the group fed on L. acidophilus, the intestinal bacterial ratio of and phyla increased, and the bacterial proportions of 16 species were significantly different from those of the control group. We estimated that the positive results on the cognitive behavioral tests were due to the increased proportion of the L. acidophilus EG004 strain in the subjects' intestines since the strain can produce butyrate and therefore modulate neurotransmitters and neurotrophic factors. We expect that this strain expands the industrial field of L. acidophilus and helps understand the mechanism of the gut-brain axis. Recently, the concept of the "gut-brain axis" has risen and suggested that microbes in the GI tract affect the brain by modulating signal molecules. Although many pieces of research were reported in a short period, a signaling mechanism and the effects of a specific bacterial strain are still unclear. Besides, since most of the research was focused on neurodegenerative disease, the study with a healthy animal model is still insufficient. In this study, we show using a healthy animal model that a bacterial strain (Lactobacillus acidophilus EG004) has a positive effect on mouse cognitive ability. We experimentally verified an improved cognitive ability by cognitive behavioral tests. We performed full 16S-23S rRNA sequencing using a Nanopore MinION instrument and provided the gut microbiome composition at the species level. This microbiome composition consisted of candidate microbial groups as a biomarker that shows positive effects on cognitive ability. Therefore, our study suggests a new perspective for probiotic strain use applicable for various industrialization processes.

Citing Articles

Genomic insights and functional evaluation of EG005: a promising probiotic with enhanced antioxidant activity.

Kim J, Jo J, Cho S, Kim H Front Microbiol. 2024; 15:1477152.

PMID: 39469458 PMC: 11513463. DOI: 10.3389/fmicb.2024.1477152.


Neuroprotective Effect of a Multistrain Probiotic Mixture in SOD1 Mice by Reducing SOD1 Aggregation and Targeting the Microbiota-Gut-Brain Axis.

Xin Z, Xin C, Huo J, Liu Q, Dong H, Li R Mol Neurobiol. 2024; 61(12):10051-10071.

PMID: 38349516 PMC: 11584480. DOI: 10.1007/s12035-024-03988-x.


Assessment of probiotic strain Lactobacillus acidophilus LB supplementation as adjunctive management of attention-deficit hyperactivity disorder in children and adolescents: a randomized controlled clinical trial.

Elhossiny R, Elshahawy H, Mohamed H, Abdelmageed R BMC Psychiatry. 2023; 23(1):823.

PMID: 37946220 PMC: 10636814. DOI: 10.1186/s12888-023-05324-4.


The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects.

Li C, Peng K, Xiao S, Long Y, Yu Q Cell Death Discov. 2023; 9(1):361.

PMID: 37773196 PMC: 10541886. DOI: 10.1038/s41420-023-01666-w.


Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases.

Bi M, Liu C, Wang Y, Liu S Microorganisms. 2023; 11(6).

PMID: 37375029 PMC: 10303039. DOI: 10.3390/microorganisms11061527.


References
1.
Rahimlou M, Hosseini S, Majdinasab N, Haghighizadeh M, Husain D . Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci. 2020; 25(2):411-422. DOI: 10.1080/1028415X.2020.1758887. View

2.
Lehnert H, Wurtman R . Amino acid control of neurotransmitter synthesis and release: physiological and clinical implications. Psychother Psychosom. 1993; 60(1):18-32. DOI: 10.1159/000288676. View

3.
Schwiertz A, Taras D, Schafer K, Beijer S, Bos N, Donus C . Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2009; 18(1):190-5. DOI: 10.1038/oby.2009.167. View

4.
Hill-Burns E, Debelius J, Morton J, Wissemann W, Lewis M, Wallen Z . Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017; 32(5):739-749. PMC: 5469442. DOI: 10.1002/mds.26942. View

5.
Zhang Z, Tang H, Chen P, Xie H, Tao Y . Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther. 2019; 4:41. PMC: 6799818. DOI: 10.1038/s41392-019-0074-5. View