» Articles » PMID: 35016880

Olvanil Activates Sensory Nerve Fibers, Increases T Cell Response and Decreases Metastasis of Breast Carcinoma

Overview
Journal Life Sci
Publisher Elsevier
Date 2022 Jan 12
PMID 35016880
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Inactivation of sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) enhances breast cancer metastasis. Sensory neurons have profound effects on immune response to a wide range of diseases including cancer. Hence, activation of sensory nerves using feasible approaches such as specific TRPV1 agonists may inhibit breast cancer metastasis through neuroimmune pathways. TRPV1 agonists are considered for the treatment of pain and inflammatory diseases.

Methods: We here first determined the effects of four different TRPV1 agonists on proliferation of three different metastatic breast carcinoma cells since TRPV1 is also expressed in cancer cells. Based on the results obtained under in-vitro conditions, brain metastatic breast carcinoma cells (4TBM) implanted orthotopically into the mammary-pad of Balb-c mice followed by olvanil treatment (i.p.). Changes in tumor growth, metastasis and immune response to cancer cells were determined.

Results: Olvanil dose-dependently activated sensory nerve fibers and markedly suppressed lung and liver metastasis without altering the growth of primary tumors. Olvanil (5 mg/kg) systemically increased T cell count, enhanced intra-tumoral recruitment of CD8+ T cells and increased IFN-γ response to irradiated cancer cells and Con-A. Anti-inflammatory changes such as increased IL-10 and decrease IL-6 as well as S100A8+ cells were observed following olvanil treatment.

Conclusions: Our results show that anti-metastatic effects of olvanil is mainly due to activation of neuro-immune pathways since olvanil dose used here is not high enough to directly activate immune cells. Furthermore, olvanil effectively depletes sensory neuropeptides; hence, olvanil is a good non-pungent alternative to capsaicin.

Citing Articles

New options for targeting TRPV1 receptors for cancer treatment: odorous Chinese herbal medicine.

Zhang M, Wang Z, Liu S, Li Y, Gong Y, Liu M Front Oncol. 2025; 15:1488289.

PMID: 40007993 PMC: 11850239. DOI: 10.3389/fonc.2025.1488289.


The neuroscience in breast cancer: Current insights and clinical opportunities.

Wang J, Wang M, Jiang L, Lin N Heliyon. 2025; 11(3):e42293.

PMID: 39975839 PMC: 11835589. DOI: 10.1016/j.heliyon.2025.e42293.


Role of TRP Channels in Cancer-Induced Bone Pain.

Coluzzi F, Scerpa M, Alessandri E, Romualdi P, Rocco M Int J Mol Sci. 2025; 26(3).

PMID: 39940997 PMC: 11818569. DOI: 10.3390/ijms26031229.


Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk.

Fan H, Liang X, Tang Y MedComm (2020). 2024; 5(11):e784.

PMID: 39492832 PMC: 11527832. DOI: 10.1002/mco2.784.


From pain to tumor immunity: influence of peripheral sensory neurons in cancer.

Mardelle U, Bretaud N, Daher C, Feuillet V Front Immunol. 2024; 15:1335387.

PMID: 38433844 PMC: 10905387. DOI: 10.3389/fimmu.2024.1335387.