» Articles » PMID: 35013546

West Nile Virus Transmission Potential in Portugal

Abstract

It is unclear whether West Nile virus (WNV) circulates endemically in Portugal. Despite the country's adequate climate for transmission, Portugal has only reported four human WNV infections so far. We performed a review of WNV-related data (1966-2020), explored mosquito (2016-2019) and land type distributions (1992-2019), and used climate data (1981-2019) to estimate WNV transmission suitability in Portugal. Serological and molecular evidence of WNV circulation from animals and vectors was largely restricted to the south. Land type and climate-driven transmission suitability distributions, but not the distribution of WNV-capable vectors, were compatible with the North-South divide present in serological and molecular evidence of WNV circulation. Our study offers a comprehensive, data-informed perspective and review on the past epidemiology, surveillance and climate-driven transmission suitability of WNV in Portugal, highlighting the south as a subregion of importance. Given the recent WNV outbreaks across Europe, our results support a timely change towards local, active surveillance.

Citing Articles

Spatiotemporal analysis of mosquito-borne infections and mosquito vectors in mainland Portugal.

Moutinho S, Rocha J, Gomes A, Gomes B, Ribeiro A BMC Infect Dis. 2025; 25(1):45.

PMID: 39789453 PMC: 11721337. DOI: 10.1186/s12879-024-10433-w.


Impact of climate change on the global circulation of West Nile virus and adaptation responses: a scoping review.

Wang H, Liu T, Gao X, Wang H, Xiao J Infect Dis Poverty. 2024; 13(1):38.

PMID: 38790027 PMC: 11127377. DOI: 10.1186/s40249-024-01207-2.


The effect of temperature on the boundary conditions of West Nile virus circulation in Europe.

de Freitas Costa E, Streng K, Avelino de Souza Santos M, Counotte M PLoS Negl Trop Dis. 2024; 18(5):e0012162.

PMID: 38709836 PMC: 11098507. DOI: 10.1371/journal.pntd.0012162.


West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers.

Lu L, Zhang F, Oude Munnink B, Munger E, Sikkema R, Pappa S PLoS Pathog. 2024; 20(1):e1011880.

PMID: 38271294 PMC: 10810478. DOI: 10.1371/journal.ppat.1011880.


Mosquito (Diptera: Culicidae) Fauna of a Zoological Park in an Urban Setting: Analysis of and Their Biotypes.

Madeira S, Bernardino R, Osorio H, Boinas F Insects. 2024; 15(1).

PMID: 38249051 PMC: 10816151. DOI: 10.3390/insects15010045.


References
1.
Granwehr B, Lillibridge K, Higgs S, Mason P, Aronson J, Campbell G . West Nile virus: where are we now?. Lancet Infect Dis. 2004; 4(9):547-56. DOI: 10.1016/S1473-3099(04)01128-4. View

2.
Campbell G, Marfin A, Lanciotti R, Gubler D . West Nile virus. Lancet Infect Dis. 2002; 2(9):519-29. DOI: 10.1016/s1473-3099(02)00368-7. View

3.
Petersen L, Brault A, Nasci R . West Nile virus: review of the literature. JAMA. 2013; 310(3):308-15. PMC: 4563989. DOI: 10.1001/jama.2013.8042. View

4.
Gamino V, Hofle U . Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res. 2013; 44:39. PMC: 3686667. DOI: 10.1186/1297-9716-44-39. View

5.
Bunning M, Bowen R, Cropp C, Sullivan K, Davis B, Komar N . Experimental infection of horses with West Nile virus. Emerg Infect Dis. 2002; 8(4):380-6. PMC: 3393377. DOI: 10.3201/eid0804.010239. View