» Articles » PMID: 35013274

Enhanced Hydrogen Generation by Reverse Spillover Effects over Bicomponent Catalysts

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jan 11
PMID 35013274
Authors
Affiliations
Soon will be listed here.
Abstract

The contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/AlO/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/AlO/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of AlO nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H generation rates for NiO/AlO/Pt. For the CoO/AlO/Pt and NiO/TiO/Pt catalysts, reverse spillover effects are also confirmed. We believe that an in-depth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.

Citing Articles

Role of Metal Cocatalysts in the Photocatalytic Production of Hydrogen from Water Revisited.

Zaera F Energy Fuels. 2025; 39(5):2422-2434.

PMID: 39936115 PMC: 11808650. DOI: 10.1021/acs.energyfuels.4c06100.


Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

Li H, Abdelgaid M, Paudel J, Holzapfel N, Augustyn V, McKone J J Am Chem Soc. 2025; 147(8):6472-6479.

PMID: 39825827 PMC: 11869286. DOI: 10.1021/jacs.4c13711.


Co and CoO in the Hydrolysis of Boron-Containing Hydrides: HO Activation on the Metal and Oxide Active Centers.

Butenko V, Komova O, Simagina V, Lipatnikova I, Ozerova A, Danilova N Materials (Basel). 2024; 17(8).

PMID: 38673151 PMC: 11050988. DOI: 10.3390/ma17081794.


Water-assisted hydrogen spillover in Pt nanoparticle-based metal-organic framework composites.

Gu Z, Li M, Chen C, Zhang X, Luo C, Yin Y Nat Commun. 2023; 14(1):5836.

PMID: 37730807 PMC: 10511639. DOI: 10.1038/s41467-023-40697-w.


Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane.

Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N Adv Sci (Weinh). 2023; 10(21):e2300726.

PMID: 37118857 PMC: 10375177. DOI: 10.1002/advs.202300726.


References
1.
Lu D, Li J, Lin C, Liao J, Feng Y, Ding Z . A Simple and Scalable Route to Synthesize Co Cu Co O @Co Cu Co O Yolk-Shell Microspheres, A High-Performance Catalyst to Hydrolyze Ammonia Borane for Hydrogen Production. Small. 2019; 15(10):e1805460. DOI: 10.1002/smll.201805460. View

2.
Li J, Guan Q, Wu H, Liu W, Lin Y, Sun Z . Highly Active and Stable Metal Single-Atom Catalysts Achieved by Strong Electronic Metal-Support Interactions. J Am Chem Soc. 2019; 141(37):14515-14519. DOI: 10.1021/jacs.9b06482. View

3.
Xiong M, Gao Z, Zhao P, Wang G, Yan W, Xing S . In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat Commun. 2020; 11(1):4773. PMC: 7508871. DOI: 10.1038/s41467-020-18567-6. View

4.
Hess N, Bowden M, Parvanov V, Mundy C, Kathmann S, Schenter G . Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K. J Chem Phys. 2008; 128(3):034508. DOI: 10.1063/1.2820768. View

5.
Dresselhaus M, Thomas I . Alternative energy technologies. Nature. 2001; 414(6861):332-7. DOI: 10.1038/35104599. View