» Articles » PMID: 35009108

Influence of Seed Source and Soil Contamination on Ecophysiological Responses of in Rehabilitation of Mining Areas

Overview
Journal Plants (Basel)
Date 2022 Jan 11
PMID 35009108
Authors
Affiliations
Soon will be listed here.
Abstract

Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and HO contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that , regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell's redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, , mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.

Citing Articles

Assembly and Function of Seed Endophytes in Response to Environmental Stress.

Wang Y, Zhang H J Microbiol Biotechnol. 2023; 33(9):1119-1129.

PMID: 37311706 PMC: 10580892. DOI: 10.4014/jmb.2303.03004.

References
1.
Wakeel A, Xu M, Gan Y . Chromium-Induced Reactive Oxygen Species Accumulation by Altering the Enzymatic Antioxidant System and Associated Cytotoxic, Genotoxic, Ultrastructural, and Photosynthetic Changes in Plants. Int J Mol Sci. 2020; 21(3). PMC: 7037945. DOI: 10.3390/ijms21030728. View

2.
Arenas-Lago D, Carvalho L, Santos E, Abreu M . The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. Ecotoxicol Environ Saf. 2016; 129:219-27. DOI: 10.1016/j.ecoenv.2016.03.041. View

3.
Anawar H, Freitas M, Canha N, Regina I . Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environ Geochem Health. 2011; 33(4):353-62. DOI: 10.1007/s10653-011-9378-2. View

4.
Carvalho L, Santos E, Abreu M . Unraveling the crucial role of the ascorbate-glutathione cycle in the resilience of Cistus monspeliensis L. to withstand high As concentrations. Ecotoxicol Environ Saf. 2019; 171:389-397. DOI: 10.1016/j.ecoenv.2018.12.098. View

5.
de la Fuente V, Rufo L, Rodriguez N, Amils R, Zuluaga J . Metal accumulation screening of the Río Tinto flora (Huelva, Spain). Biol Trace Elem Res. 2009; 134(3):318-41. DOI: 10.1007/s12011-009-8471-1. View