» Articles » PMID: 35005567

Translational and Post-translational Control of Human Naïve Versus Primed Pluripotency

Overview
Journal iScience
Publisher Cell Press
Date 2022 Jan 10
PMID 35005567
Authors
Affiliations
Soon will be listed here.
Abstract

Deciphering the regulatory network for human naive and primed pluripotency is of fundamental theoretical and applicable significance. Here, by combining quantitative proteomics, phosphoproteomics, and acetylproteomics analyses, we revealed RNA processing and translation as the most differentially regulated processes between naive and primed human embryonic stem cells (hESCs). Although glycolytic primed hESCs rely predominantly on the eukaryotic initiation factor 4E (eIF4E)-mediated cap-dependent pathway for protein translation, naive hESCs with reduced mammalian target of rapamycin complex (mTORC1) activity are more tolerant to eIF4E inhibition, and their bivalent metabolism allows for translating selective mRNAs via both eIF4E-dependent and eIF4E-independent/eIF4A2-dependent pathways to form a more compact naive proteome. Globally up-regulated proteostasis and down-regulated post-translational modifications help to further refine the naive proteome that is compatible with the more rapid cycling of naive hESCs, where CDK1 plays an indispensable coordinative role. These findings may assist in better understanding the unrestricted lineage potential of naive hESCs and in further optimizing conditions for future clinical applications.

Citing Articles

OCT4 translationally promotes AKT signaling as an RNA-binding protein in stressed pluripotent stem cells.

Chen W, Chen X, Chen C, She S, Li X, Shan L Stem Cell Res Ther. 2025; 16(1):84.

PMID: 39988663 PMC: 11849194. DOI: 10.1186/s13287-025-04229-1.


Intercellular mRNA transfer alters the human pluripotent stem cell state.

Yoneyama Y, Zhang R, Maezawa M, Masaki H, Kimura M, Cai Y Proc Natl Acad Sci U S A. 2025; 122(4):e2413351122.

PMID: 39841146 PMC: 11789055. DOI: 10.1073/pnas.2413351122.


Arp2/3 complex activity enables nuclear YAP for naïve pluripotency of human embryonic stem cells.

Meyer N, Singh T, Kutys M, Nystul T, Barber D Elife. 2024; 13.

PMID: 39319536 PMC: 11509671. DOI: 10.7554/eLife.89725.


Substrates mimicking the blastocyst geometry revert pluripotent stem cell to naivety.

Xu X, Wang W, Liu Y, Backemo J, Heuchel M, Wang W Nat Mater. 2024; 23(12):1748-1758.

PMID: 39134648 PMC: 11599042. DOI: 10.1038/s41563-024-01971-4.


Inter-cellular mRNA Transfer Alters Human Pluripotent Stem Cell State.

Yoneyama Y, Zhang R, Kimura M, Cai Y, Adam M, Parameswaran S bioRxiv. 2024; .

PMID: 38979277 PMC: 11230441. DOI: 10.1101/2024.06.27.600209.


References
1.
Ware C, Wang L, Mecham B, Shen L, Nelson A, Bar M . Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell. 2009; 4(4):359-69. PMC: 2719860. DOI: 10.1016/j.stem.2009.03.001. View

2.
Cate J . Human eIF3: from 'blobology' to biological insight. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1716). PMC: 5311922. DOI: 10.1098/rstb.2016.0176. View

3.
Li L, Bennett S, Wang L . Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr. 2012; 6(1):59-70. PMC: 3364139. DOI: 10.4161/cam.19583. View

4.
Weinberger L, Ayyash M, Novershtern N, Hanna J . Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 2016; 17(3):155-69. DOI: 10.1038/nrm.2015.28. View

5.
Io S, Kabata M, Iemura Y, Semi K, Morone N, Minagawa A . Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell. 2021; 28(6):1023-1039.e13. DOI: 10.1016/j.stem.2021.03.013. View