» Articles » PMID: 35004730

Red Blood Cell Extracellular Vesicle-Based Drug Delivery: Challenges and Opportunities

Overview
Specialty General Medicine
Date 2022 Jan 10
PMID 35004730
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, red blood cell-derived extracellular vesicles (RBCEVs) have attracted attention for clinical applications because of their safety and biocompatibility. RBCEVs can escape macrophages through the binding of CD47 to inhibitory receptor signal regulatory protein α. Furthermore, genetic materials such as siRNA, miRNA, mRNA, or single-stranded RNA can be encapsulated within RBCEVs and then released into target cells for precise treatment. However, their side effects, half-lives, target cell specificity, and limited large-scale production under good manufacturing practice remain challenging. In this review, we summarized the biogenesis and composition of RBCEVs, discussed the advantages and disadvantages of RBCEVs for drug delivery compared with synthetic nanovesicles and non-red blood cell-derived EVs, and provided perspectives for overcoming current limitations to the use of RBCEVs for clinical applications.

Citing Articles

Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides.

Ding H, Zhou H, Jiang Y, Chen S, Wu X, Li Y Drug Des Devel Ther. 2025; 19:1001-1023.

PMID: 39967902 PMC: 11834698. DOI: 10.2147/DDDT.S507402.


Incorporation of recombinant proteins into extracellular vesicles by Lactococcus cremoris.

Plavec T, Zagar Soderznik K, Della Pelle G, Zupancic S, Vidmar R, Berlec A Sci Rep. 2025; 15(1):1768.

PMID: 39815011 PMC: 11736121. DOI: 10.1038/s41598-025-86492-z.


Efficient and highly reproducible production of red blood cell-derived extracellular vesicle mimetics for the loading and delivery of RNA molecules.

Biagiotti S, Canonico B, Tiboni M, Abbas F, Perla E, Montanari M Sci Rep. 2024; 14(1):14610.

PMID: 38918594 PMC: 11199497. DOI: 10.1038/s41598-024-65623-y.


Addressing Heterogeneity in Direct Analysis of Extracellular Vesicles and Their Analogs by Membrane Sensing Peptides as Pan-Vesicular Affinity Probes.

Gori A, Frigerio R, Gagni P, Burrello J, Panella S, Raimondi A Adv Sci (Weinh). 2024; 11(29):e2400533.

PMID: 38822532 PMC: 11304302. DOI: 10.1002/advs.202400533.


Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System.

Krishnan M, Alimi O, Pan T, Kuss M, Korade Z, Hu G Pharmaceutics. 2024; 16(1).

PMID: 38258111 PMC: 10818718. DOI: 10.3390/pharmaceutics16010102.


References
1.
Sudnitsyna J, Skverchinskaya E, Dobrylko I, Nikitina E, Gambaryan S, Mindukshev I . Microvesicle Formation Induced by Oxidative Stress in Human Erythrocytes. Antioxidants (Basel). 2020; 9(10). PMC: 7650597. DOI: 10.3390/antiox9100929. View

2.
Kooijmans S, Vader P, van Dommelen S, van Solinge W, Schiffelers R . Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012; 7:1525-41. PMC: 3356169. DOI: 10.2147/IJN.S29661. View

3.
Huang H, Zhu J, Fan L, Lin Q, Fu D, Wei B . MicroRNA Profiling of Exosomes Derived from Red Blood Cell Units: Implications in Transfusion-Related Immunomodulation. Biomed Res Int. 2019; 2019:2045915. PMC: 6595350. DOI: 10.1155/2019/2045915. View

4.
de Oliveira Jr G, Zigon E, Rogers G, Davodian D, Lu S, Jovanovic-Talisman T . Detection of Extracellular Vesicle RNA Using Molecular Beacons. iScience. 2020; 23(1):100782. PMC: 6992906. DOI: 10.1016/j.isci.2019.100782. View

5.
Bebelman M, Smit M, Pegtel D, Baglio S . Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018; 188:1-11. DOI: 10.1016/j.pharmthera.2018.02.013. View