» Articles » PMID: 34998890

Dendritic Excitability and Synaptic Plasticity In Vitro and In Vivo

Overview
Journal Neuroscience
Specialty Neurology
Date 2022 Jan 9
PMID 34998890
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Much of our understanding of dendritic and synaptic physiology comes from in vitro experimentation, where the afforded mechanical stability and convenience of applying drugs allowed patch-clamping based recording techniques to investigate ion channel distributions, their gating kinetics, and to uncover dendritic integrative and synaptic plasticity rules. However, with current efforts to study these questions in vivo, there is a great need to translate existing knowledge between in vitro and in vivo experimental conditions. In this review, we identify discrepancies between in vitro and in vivo ionic composition of extracellular media and discuss how changes in ionic composition alter dendritic excitability and plasticity induction. Here, we argue that under physiological in vivo ionic conditions, dendrites are expected to be more excitable and the threshold for synaptic plasticity induction to be lowered. Consequently, the plasticity rules described in vitro vary significantly from those implemented in vivo.

Citing Articles

Functional architecture of intracellular oscillations in hippocampal dendrites.

Liao Z, Gonzalez K, Li D, Yang C, Holder D, McClain N Nat Commun. 2024; 15(1):6295.

PMID: 39060234 PMC: 11282248. DOI: 10.1038/s41467-024-50546-z.


Differences in the consolidation by spontaneous and evoked ripples in the presence of active dendrites.

Jauch J, Becker M, Tetzlaff C, Fauth M PLoS Comput Biol. 2024; 20(6):e1012218.

PMID: 38917228 PMC: 11230591. DOI: 10.1371/journal.pcbi.1012218.


Interdependence of cellular and network properties in respiratory rhythm generation.

Phillips R, Baertsch N Proc Natl Acad Sci U S A. 2024; 121(19):e2318757121.

PMID: 38691591 PMC: 11087776. DOI: 10.1073/pnas.2318757121.


Learning, Fast and Slow: Single- and Many-Shot Learning in the Hippocampus.

Liao Z, Losonczy A Annu Rev Neurosci. 2024; 47(1):187-209.

PMID: 38663090 PMC: 11519319. DOI: 10.1146/annurev-neuro-102423-100258.


Functional architecture of intracellular oscillations in hippocampal dendrites.

Liao Z, Gonzalez K, Li D, Yang C, Holder D, McClain N bioRxiv. 2024; .

PMID: 38405778 PMC: 10888786. DOI: 10.1101/2024.02.12.579750.


References
1.
Adoff M, Climer J, Davoudi H, Marvin J, Looger L, Dombeck D . The functional organization of excitatory synaptic input to place cells. Nat Commun. 2021; 12(1):3558. PMC: 8196201. DOI: 10.1038/s41467-021-23829-y. View

2.
Sheffield M, Adoff M, Dombeck D . Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation. Neuron. 2017; 96(2):490-504.e5. PMC: 5642299. DOI: 10.1016/j.neuron.2017.09.029. View

3.
Magee J . Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci. 1998; 18(19):7613-24. PMC: 6793032. View

4.
Palacios-Filardo J, Mellor J . Neuromodulation of hippocampal long-term synaptic plasticity. Curr Opin Neurobiol. 2018; 54:37-43. PMC: 6367596. DOI: 10.1016/j.conb.2018.08.009. View

5.
Cueni L, Canepari M, Adelman J, Luthi A . Ca(2+) signaling by T-type Ca(2+) channels in neurons. Pflugers Arch. 2008; 457(5):1161-72. DOI: 10.1007/s00424-008-0582-6. View