» Articles » PMID: 34966910

Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations

Overview
Journal ACS Nanosci Au
Specialty Biotechnology
Date 2021 Dec 30
PMID 34966910
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Challenges investigating molecules on plasmonic nanostructures have limited understanding of these interactions. However, the chemically specific information in the surface-enhanced Raman scattering (SERS) spectrum can identify perturbations in the adsorbed molecules to provide insight relevant to applications in sensing, catalysis, and energy conversion. Here, we demonstrate spectrally resolved SERS imaging, to simultaneously image and collect the SERS spectra from molecules adsorbed on individual nanoparticles. We observe intensity and frequency fluctuations in the SERS signal on the time scale of tens of milliseconds from -mercaptobenzoic acid (MBA) adsorbed to gold nanoparticles. The SERS signal fluctuations correlate with density functional theory calculations of radicals generated by the interaction between MBA and plasmon-generated hot electrons. Applying localization microscopy to the data provides a super-resolution spectrally resolved map that indicates the plasmonic-induced molecular charging occurs on the extremities of the nanoparticles, where the localized electromagnetic field is reported to be most intense.

Citing Articles

Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg J, Besteiro L ACS Nano. 2024; 18(43):29337-29379.

PMID: 39401392 PMC: 11526435. DOI: 10.1021/acsnano.4c06192.


Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation.

Sloan-Dennison S, Wallace G, Hassanain W, Laing S, Faulds K, Graham D Nano Converg. 2024; 11(1):33.

PMID: 39154073 PMC: 11330436. DOI: 10.1186/s40580-024-00443-4.


Detection of surface enhanced Raman scattering active hotspot using near field scanning optical microscopy.

Hossain M Sci Rep. 2024; 14(1):10559.

PMID: 38719923 PMC: 11078942. DOI: 10.1038/s41598-024-61503-7.


Super-Resolution SERS Spectral Bioimaging.

Schultz Z, Shoup D, Smith A Proc SPIE Int Soc Opt Eng. 2023; 12203.

PMID: 37431396 PMC: 10329846. DOI: 10.1117/12.2632824.


Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis.

Zoltowski C, Shoup D, Schultz Z J Phys Chem C Nanomater Interfaces. 2023; 126(34):14547-14557.

PMID: 37425396 PMC: 10327581. DOI: 10.1021/acs.jpcc.2c03150.


References
1.
Asiala S, Schultz Z . Label-free in situ detection of individual macromolecular assemblies by surface enhanced Raman scattering. Chem Commun (Camb). 2012; 49(39):4340-2. PMC: 3574179. DOI: 10.1039/c2cc37268a. View

2.
Scarpitti B, Morrison A, Buyanova M, Schultz Z . Comparison of 4-Mercaptobenzoic Acid Surface-Enhanced Raman Spectroscopy-Based Methods for pH Determination in Cells. Appl Spectrosc. 2020; 74(11):1423-1432. PMC: 7747936. DOI: 10.1177/0003702820950768. View

3.
El-Khoury P, Schultz Z . From SERS to TERS and Beyond: Molecules as Probes of Nanoscopic Optical Fields. J Phys Chem C Nanomater Interfaces. 2021; 124(50):27267-27275. PMC: 8297906. DOI: 10.1021/acs.jpcc.0c08337. View

4.
Zhang W, Caldarola M, Pradhan B, Orrit M . Gold Nanorod Enhanced Fluorescence Enables Single-Molecule Electrochemistry of Methylene Blue. Angew Chem Int Ed Engl. 2017; 56(13):3566-3569. DOI: 10.1002/anie.201612389. View

5.
Al-Zubeidi A, Hoener B, Collins S, Wang W, Kirchner S, Hosseini Jebeli S . Hot Holes Assist Plasmonic Nanoelectrode Dissolution. Nano Lett. 2019; 19(2):1301-1306. DOI: 10.1021/acs.nanolett.8b04894. View