» Articles » PMID: 34961328

Integrative Prioritization of Causal Genes for Coronary Artery Disease

Abstract

Background: Hundreds of candidate genes have been associated with coronary artery disease (CAD) through genome-wide association studies. However, a systematic way to understand the causal mechanism(s) of these genes, and a means to prioritize them for further study, has been lacking. This represents a major roadblock for developing novel disease- and gene-specific therapies for patients with CAD. Recently, powerful integrative genomics analyses pipelines have emerged to identify and prioritize candidate causal genes by integrating tissue/cell-specific gene expression data with genome-wide association study data sets.

Methods: We aimed to develop a comprehensive integrative genomics analyses pipeline for CAD and to provide a prioritized list of causal CAD genes. To this end, we leveraged several complimentary informatics approaches to integrate summary statistics from CAD genome-wide association studies (from UK Biobank and CARDIoGRAMplusC4D) with transcriptomic and expression quantitative trait loci data from 9 cardiometabolic tissue/cell types in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task).

Results: We identified 162 unique candidate causal CAD genes, which exerted their effect from between one and up to 7 disease-relevant tissues/cell types, including the arterial wall, blood, liver, skeletal muscle, adipose, foam cells, and macrophages. When their causal effect was ranked, the top candidate causal CAD genes were (associated with the 9p21.3 risk locus) and ; both exerting their causal effect in the arterial wall. A majority of candidate causal genes were represented in cross-tissue gene regulatory co-expression networks that are involved with CAD, with 22/162 being key drivers in those networks.

Conclusions: We identified and prioritized candidate causal CAD genes, also localizing their tissue(s) of causal effect. These results should serve as a resource and facilitate targeted studies to identify the functional impact of top causal CAD genes.

Citing Articles

Cell type-specific epigenetic regulatory circuitry of coronary artery disease loci.

Hecker D, Song X, Baumgarten N, Diagel A, Katsaouni N, Li L bioRxiv. 2025; .

PMID: 40027824 PMC: 11870499. DOI: 10.1101/2025.02.20.639228.


Prediction of causal genes at GWAS loci with pleiotropic gene regulatory effects using sets of correlated instrumental variables.

Khan M, Ludl A, Bankier S, Bjorkegren J, Michoel T PLoS Genet. 2024; 20(11):e1011473.

PMID: 39527631 PMC: 11581411. DOI: 10.1371/journal.pgen.1011473.


PHACTR1 and APOC1 genetic variants are associated with multi-vessel coronary artery disease.

Al Hageh C, OSullivan S, Henschel A, Abchee A, Hantouche M, Iakovidou N Lipids Health Dis. 2024; 23(1):332.

PMID: 39395990 PMC: 11471027. DOI: 10.1186/s12944-024-02327-2.


Integrative gene regulatory network analysis discloses key driver genes of fibromuscular dysplasia.

dEscamard V, Kadian-Dodov D, Ma L, Lu S, King A, Xu Y Nat Cardiovasc Res. 2024; 3(9):1098-1122.

PMID: 39271816 DOI: 10.1038/s44161-024-00533-w.


Global genomic profile of hippocampal endothelial cells by single-nuclei RNA sequencing in female diabetic mice is associated with cognitive dysfunction.

Milenkovic D, Nuthikattu S, Norman J, Villablanca A Am J Physiol Heart Circ Physiol. 2024; 327(4):H908-H926.

PMID: 39150395 PMC: 11901383. DOI: 10.1152/ajpheart.00251.2024.


References
1.
Erdmann J, Kessler T, Venegas L, Schunkert H . A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018; 114(9):1241-1257. DOI: 10.1093/cvr/cvy084. View

2.
McCall M, Illei P, Halushka M . Complex Sources of Variation in Tissue Expression Data: Analysis of the GTEx Lung Transcriptome. Am J Hum Genet. 2016; 99(3):624-635. PMC: 5011060. DOI: 10.1016/j.ajhg.2016.07.007. View

3.
Giambartolomei C, Vukcevic D, Schadt E, Franke L, Hingorani A, Wallace C . Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014; 10(5):e1004383. PMC: 4022491. DOI: 10.1371/journal.pgen.1004383. View

4.
Peng S, Deyssenroth M, Di Narzo A, Cheng H, Zhang Z, Lambertini L . Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet. 2019; 14(12):e1007799. PMC: 6329610. DOI: 10.1371/journal.pgen.1007799. View

5.
Moore K, Koplev S, Fisher E, Tabas I, Bjorkegren J, Doran A . Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol. 2018; 72(18):2181-2197. PMC: 6522246. DOI: 10.1016/j.jacc.2018.08.2147. View