» Articles » PMID: 34957577

Single-cell Transcriptomics of LepR-positive Skeletal Cells Reveals Heterogeneous Stress-dependent Stem and Progenitor Pools

Overview
Journal EMBO J
Date 2021 Dec 27
PMID 34957577
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3 bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1 periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.

Citing Articles

Research Trends and Dynamics in Single-cell RNA Sequencing for Musculoskeletal Diseases: A Scientometric and Visualization Study.

Cao S, Wei Y, Yue Y, Wang D, Xiong A, Yang J Int J Med Sci. 2025; 22(3):528-550.

PMID: 39898252 PMC: 11783068. DOI: 10.7150/ijms.104697.


Deep imaging of LepR stromal cells in optically cleared murine bone hemisections.

Ni Y, Wu J, Liu F, Yi Y, Meng X, Gao X Bone Res. 2025; 13(1):6.

PMID: 39800733 PMC: 11725602. DOI: 10.1038/s41413-024-00387-9.


Exploration of Key Regulatory Factors in Mesenchymal Stem Cell Continuous Osteogenic Differentiation via Transcriptomic Analysis.

Pan Y, Liu T, Li L, He L, Pan S, Liu Y Genes (Basel). 2025; 15(12.

PMID: 39766835 PMC: 11675713. DOI: 10.3390/genes15121568.


Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank.

Xu W, Mesa-Eguiagaray I, Morris D, Wang C, Gray C, Sjostrom S Nat Commun. 2025; 16(1):99.

PMID: 39747859 PMC: 11697225. DOI: 10.1038/s41467-024-55422-4.


Trajectory-centric framework TrajAtlas reveals multi-scale differentiation heterogeneity among cells, genes, and gene modules in osteogenesis.

Han L, Ji Y, Yu Y, Ni Y, Zeng H, Zhang X PLoS Genet. 2024; 20(10):e1011319.

PMID: 39436962 PMC: 11530032. DOI: 10.1371/journal.pgen.1011319.


References
1.
Worthley D, Churchill M, Compton J, Tailor Y, Rao M, Si Y . Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015; 160(1-2):269-84. PMC: 4436082. DOI: 10.1016/j.cell.2014.11.042. View

2.
Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E . Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009; 206(11):2483-96. PMC: 2768869. DOI: 10.1084/jem.20091046. View

3.
Park D, Spencer J, Koh B, Kobayashi T, Fujisaki J, Clemens T . Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012; 10(3):259-72. PMC: 3652251. DOI: 10.1016/j.stem.2012.02.003. View

4.
Docheva D, Hunziker E, Fassler R, Brandau O . Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol. 2005; 25(2):699-705. PMC: 543433. DOI: 10.1128/MCB.25.2.699-705.2005. View

5.
Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S . Mapping the Mouse Cell Atlas by Microwell-Seq. Cell. 2018; 172(5):1091-1107.e17. DOI: 10.1016/j.cell.2018.02.001. View