» Articles » PMID: 34946639

The Overexpression of Results in Enhanced Erythritol Synthesis from Glycerol by the Yeast

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2021 Dec 24
PMID 34946639
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The unconventional yeast is used to produce erythritol from glycerol. In this study, the role of the erythrose reductase (ER) homolog in erythritol synthesis was analyzed. The deletion of the gene resulted in an increased production of mannitol (308%) and arabitol (204%) before the utilization of these polyols began. The strain overexpressing the gene was used to increase the erythritol yield from glycerol as a sole carbon source in batch cultures, resulting in a yield of 0.4 g/g. The specific consumption rate (qs) increased from 5.83 g/g/L for the WT strain to 8.49 g/g/L for the modified strain and the productivity of erythritol increased from 0.28 g/(L h) for the A101 strain to 0.41 g/(L h) for the modified strain. The application of the research may prove positive for shortening the cultivation time due to the increased rate of consumption of the substrate combined with the increased parameters of erythritol synthesis.

Citing Articles

Research progress on biosynthesis of erythritol and multi-dimensional optimization of production strategies.

Li M, Ni Z, Li Z, Yin Y, Liu J, Wu D World J Microbiol Biotechnol. 2024; 40(8):240.

PMID: 38867081 DOI: 10.1007/s11274-024-04043-6.


Understanding the role of GRE3 in the erythritol biosynthesis pathway in Saccharomyces uvarum and its implication in osmoregulation and redox homeostasis.

Albillos-Arenal S, Minebois R, Querol A, Barrio E Microb Biotechnol. 2023; 16(9):1858-1871.

PMID: 37449952 PMC: 10443344. DOI: 10.1111/1751-7915.14313.


In-depth analysis of erythrose reductase homologs in Yarrowia lipolytica.

Szczepanczyk M, Rzechonek D, Neuveglise C, Mironczuk A Sci Rep. 2023; 13(1):9129.

PMID: 37277427 PMC: 10241868. DOI: 10.1038/s41598-023-36152-x.


Brown seaweed hydrolysate as a promising growth substrate for biomass and lipid synthesis of the yeast .

Dobrowolski A, Nawijn W, Mironczuk A Front Bioeng Biotechnol. 2022; 10:944228.

PMID: 36061426 PMC: 9428158. DOI: 10.3389/fbioe.2022.944228.


as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans.

Jach M, Malm A Molecules. 2022; 27(7).

PMID: 35408699 PMC: 9000428. DOI: 10.3390/molecules27072300.

References
1.
Papanikolaou S, Aggelis G . Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol. 2003; 46(6):398-402. DOI: 10.1007/s00284-002-3907-2. View

2.
Rzechonek D, Szczepanczyk M, Wang G, Borodina I, Mironczuk A . HOG-Independent Osmoprotection by Erythritol in Yeast . Genes (Basel). 2020; 11(12). PMC: 7761004. DOI: 10.3390/genes11121424. View

3.
Mironczuk A, Rakicka M, Biegalska A, Rymowicz W, Dobrowolski A . A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour Technol. 2015; 198:445-55. DOI: 10.1016/j.biortech.2015.09.008. View

4.
de Cock P, Makinen K, Honkala E, Saag M, Kennepohl E, Eapen A . Erythritol Is More Effective Than Xylitol and Sorbitol in Managing Oral Health Endpoints. Int J Dent. 2016; 2016:9868421. PMC: 5011233. DOI: 10.1155/2016/9868421. View

5.
Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G . Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol. 2007; 99(7):2419-28. DOI: 10.1016/j.biortech.2007.05.005. View