Generation of a Novel High-Affinity Antibody Binding to PCSK9 Catalytic Domain with Slow Dissociation Rate by CDR-Grafting, Alanine Scanning and Saturated Site-Directed Mutagenesis for Favorably Treating Hypercholesterolemia
Overview
Authors
Affiliations
Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. The heavy-chain constant region of h5E12-L230G was modified to eliminate the cytotoxic effector functions and mitigate the heterogeneity. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity ( = 1.72 nM) and an extremely slow dissociation rate (, 4.84 × 10 s), which interprets its quite low binding energy (-54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reducing the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to the positive control alirocumab. Our data indicate that h5E12-L230G is a high-affinity anti-PCSK9 antibody candidate with an extremely slow dissociation rate for favorably treating hypercholesterolemia and relevant cardiovascular diseases.
Comparison of "framework Shuffling" and "CDR Grafting" in humanization of a PD-1 murine antibody.
Wang Y, Chen Y, Xu H, Rana G, Tan X, He M Front Immunol. 2024; 15:1395854.
PMID: 39076979 PMC: 11284016. DOI: 10.3389/fimmu.2024.1395854.