» Articles » PMID: 34944255

Twenty Years After De Ley and Blaxter-How Far Did We Progress in Understanding the Phylogeny of the Phylum Nematoda?

Overview
Journal Animals (Basel)
Date 2021 Dec 24
PMID 34944255
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular phylogenetics brought radical changes to our understanding of nematode evolution, resulting in substantial modifications to nematode classification implemented by De Ley and Blaxter and widely accepted now. Numerous phylogenetic studies were subsequently published that both improved and challenged this classification. Here we present a summary of these changes. We created cladograms that summarise phylogenetic relationships within Nematoda using phylum-wide to superfamily-wide molecular phylogenies published in since 2005, and supplemented with the phylogenetic analyses for Enoplia and Chromadoria with the aim of clarifying the position of several taxa. The results show which parts of the Nematode tree are well resolved and understood, and which parts require more research, either by adding taxa that have not been included yet (increasing taxon coverage), or by changing the phylogenetic approach (improving data quality, using different types of data or different methods of analysis). The currently used classification of the phylum Nematoda in many cases does not reflect the phylogeny and in itself requires numerous improvements and rearrangements.

Citing Articles

Evolutionary plasticity in nematode Hox gene complements and genomic loci arrangement.

Kirangwa J, Laetsch D, King E, Stevens L, Blaxter M, Holovachov O Sci Rep. 2024; 14(1):29513.

PMID: 39604390 PMC: 11603191. DOI: 10.1038/s41598-024-79962-3.


Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology.

Braendle C, Paaby A Genetics. 2024; 228(3).

PMID: 39422376 PMC: 11538407. DOI: 10.1093/genetics/iyae151.


Evolution of neuropeptide Y/RFamide-like receptors in nematodes.

Reinhardt F, Kaiser A, Promel S, Stadler P Heliyon. 2024; 10(14):e34473.

PMID: 39130429 PMC: 11315170. DOI: 10.1016/j.heliyon.2024.e34473.


Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus.

Puza V, Machado R Zoological Lett. 2024; 10(1):13.

PMID: 39020388 PMC: 11256433. DOI: 10.1186/s40851-024-00235-y.


Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection.

Gendron E, Qing X, Sevigny J, Li H, Liu Z, Blaxter M BMC Genomics. 2024; 25(1):615.

PMID: 38890582 PMC: 11184840. DOI: 10.1186/s12864-024-10500-1.


References
1.
Ross J, Pieterse A, Malan A, Ivanova E . Phasmarhabditis safricana n. sp. (Nematoda: Rhabditidae), a parasite of the slug Deroceras reticulatum from South Africa. Zootaxa. 2018; 4420(3):391-404. DOI: 10.11646/zootaxa.4420.3.5. View

2.
Smythe A . Evolution of Feeding Structures in the Marine Nematode Order Enoplida. Integr Comp Biol. 2015; 55(2):228-40. DOI: 10.1093/icb/icv043. View

3.
Bert W, Leliaert F, Vierstraete A, Vanfleteren J, Borgonie G . Molecular phylogeny of the Tylenchina and evolution of the female gonoduct (Nematoda: Rhabditida). Mol Phylogenet Evol. 2008; 48(2):728-44. DOI: 10.1016/j.ympev.2008.04.011. View

4.
Holterman M, Karssen G, van den Elsen S, van Megen H, Bakker J, Helder J . Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology. 2009; 99(3):227-35. DOI: 10.1094/PHYTO-99-3-0227. View

5.
Leduc D, Zhao Z . Molecular characterization of free-living nematodes from Kermadec Trench (Nematoda: Aegialoalaimidae, Xyalidae) with description of emAegialoalaimus/em emtereticauda/em n. sp. Zootaxa. 2021; 4949(2):zootaxa.4949.2.7. DOI: 10.11646/zootaxa.4949.2.7. View