» Articles » PMID: 34935970

Computational Investigation of the Impact of Core Sequence on Immobile DNA Four-way Junction Structure and Dynamics

Overview
Specialty Biochemistry
Date 2021 Dec 22
PMID 34935970
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Immobile four-way junctions (4WJs) are core structural motifs employed in the design of programmed DNA assemblies. Understanding the impact of sequence on their equilibrium structure and flexibility is important to informing the design of complex DNA architectures. While core junction sequence is known to impact the preferences for the two possible isomeric states that junctions reside in, previous investigations have not quantified these preferences based on molecular-level interactions. Here, we use all-atom molecular dynamics simulations to investigate base-pair level structure and dynamics of four-way junctions, using the canonical Seeman J1 junction as a reference. Comparison of J1 with equivalent single-crossover topologies and isolated nicked duplexes reveal conformational impact of the double-crossover motif. We additionally contrast J1 with a second junction core sequence termed J24, with equal thermodynamic preference for each isomeric configuration. Analyses of the base-pair degrees of freedom for each system, free energy calculations, and reduced-coordinate sampling of the 4WJ isomers reveal the significant impact base sequence has on local structure, isomer bias, and global junction dynamics.

Citing Articles

Detachable DNA Assembly Module to Dissect Tumor Cells Heterogeneity via RNA Pinpoint Screening.

Liu W, Liao N, Lei Y, Liang W, Yang X, Yuan R Adv Sci (Weinh). 2024; 11(46):e2401253.

PMID: 39422178 PMC: 11633503. DOI: 10.1002/advs.202401253.


Site-specific investigation of DNA Holliday Junction dynamics and structure with 6-Methylisoxanthopterin, a fluorescent guanine analog.

Lombardo Z, Mukerji I Trends Photochem Photobiol. 2024; 22:85-102.

PMID: 39371247 PMC: 11450702.


Sculpting photoproducts with DNA origami.

Gorman J, Hart S, John T, Castellanos M, Harris D, Parsons M Chem. 2024; 10(5):1553-1575.

PMID: 38827435 PMC: 11138899. DOI: 10.1016/j.chempr.2024.03.007.


Site-Specific Investigation of DNA Holliday Junction Dynamics and Structure with 6-Methylisoxanthopterin, a Fluorescent Guanine Analog.

Lombardo Z, Mukerji I bioRxiv. 2024; .

PMID: 38659790 PMC: 11042373. DOI: 10.1101/2024.04.19.590264.


3dDNAscoreA: A scoring function for evaluation of DNA 3D structures.

Zhang Y, Yang C, Xiong Y, Xiao Y Biophys J. 2024; 123(17):2696-2704.

PMID: 38409781 PMC: 11393702. DOI: 10.1016/j.bpj.2024.02.018.


References
1.
Yoo J, Aksimentiev A . In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc Natl Acad Sci U S A. 2013; 110(50):20099-104. PMC: 3864285. DOI: 10.1073/pnas.1316521110. View

2.
Zhang D, Turberfield A, Yurke B, Winfree E . Engineering entropy-driven reactions and networks catalyzed by DNA. Science. 2007; 318(5853):1121-5. DOI: 10.1126/science.1148532. View

3.
Dutta P, Varghese R, Nangreave J, Lin S, Yan H, Liu Y . DNA-directed artificial light-harvesting antenna. J Am Chem Soc. 2011; 133(31):11985-93. DOI: 10.1021/ja1115138. View

4.
Ke Y, Ong L, Sun W, Song J, Dong M, Shih W . DNA brick crystals with prescribed depths. Nat Chem. 2014; 6(11):994-1002. PMC: 4238964. DOI: 10.1038/nchem.2083. View

5.
Dietz H, Douglas S, Shih W . Folding DNA into twisted and curved nanoscale shapes. Science. 2009; 325(5941):725-30. PMC: 2737683. DOI: 10.1126/science.1174251. View