» Articles » PMID: 34916917

Electrophysiological Biomarkers of Epileptogenicity in Alzheimer's Disease

Overview
Specialty Neurology
Date 2021 Dec 17
PMID 34916917
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Cortical network hyperexcitability is an inextricable feature of Alzheimer's disease (AD) that also might accelerate its progression. Seizures are reported in 10-22% of patients with AD, and subclinical epileptiform abnormalities have been identified in 21-42% of patients with AD without seizures. Accurate identification of hyperexcitability and appropriate intervention to slow the compromise of cognitive functions of AD might open up a new approach to treatment. Based on the results of several studies, epileptiform discharges, especially those with specific features (including high frequency, robust morphology, right temporal location, and occurrence during awake or rapid eye movement states), frequent small sharp spikes (SSSs), temporal intermittent rhythmic delta activities (TIRDAs), and paroxysmal slow wave events (PSWEs) recorded in long-term scalp electroencephalogram (EEG) provide sufficient sensitivity and specificity in detecting cortical network hyperexcitability and epileptogenicity of AD. In addition, magnetoencephalogram (MEG), foramen ovale (FO) electrodes, and computational approaches help to find subclinical seizures that are invisible on scalp EEGs. We performed a comprehensive analysis of the aforementioned electrophysiological biomarkers of AD-related seizures.

Citing Articles

Functional network disruption in cognitively unimpaired autosomal dominant Alzheimer's disease: a magnetoencephalography study.

van Nifterick A, de Haan W, Stam C, Hillebrand A, Scheltens P, Van Kesteren R Brain Commun. 2024; 6(6):fcae423.

PMID: 39713236 PMC: 11660908. DOI: 10.1093/braincomms/fcae423.


Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments.

Kalyvas A, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T J Clin Med. 2024; 13(13).

PMID: 38999445 PMC: 11242231. DOI: 10.3390/jcm13133879.


Local signal variability and functional connectivity: Sensitive measures of the excitation-inhibition ratio?.

van Nifterick A, Scheijbeler E, Gouw A, de Haan W, Stam C Cogn Neurodyn. 2024; 18(2):519-537.

PMID: 38699618 PMC: 11061092. DOI: 10.1007/s11571-023-10003-x.


: the implications of excitatory GABAergic signaling in neurological disorders.

McArdle C, Arnone A, Heaney C, Raab-Graham K Front Psychiatry. 2024; 14:1296527.

PMID: 38268565 PMC: 10805837. DOI: 10.3389/fpsyt.2023.1296527.


Network Hyperexcitability in Early Alzheimer's Disease: Is Functional Connectivity a Potential Biomarker?.

Stam C, van Nifterick A, de Haan W, Gouw A Brain Topogr. 2023; 36(4):595-612.

PMID: 37173584 PMC: 10293463. DOI: 10.1007/s10548-023-00968-7.


References
1.
Sperling M, Mendius J, Engel Jr J . Mesial temporal spikes: a simultaneous comparison of sphenoidal, nasopharyngeal, and ear electrodes. Epilepsia. 1986; 27(1):81-6. DOI: 10.1111/j.1528-1157.1986.tb03505.x. View

2.
Palop J, Mucke L . Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009; 66(4):435-40. PMC: 2812914. DOI: 10.1001/archneurol.2009.15. View

3.
Tyvaert L, Levan P, Dubeau F, Gotman J . Noninvasive dynamic imaging of seizures in epileptic patients. Hum Brain Mapp. 2009; 30(12):3993-4011. PMC: 3767605. DOI: 10.1002/hbm.20824. View

4.
Lam A, Cole A, Cash S . New Approaches to Studying Silent Mesial Temporal Lobe Seizures in Alzheimer's Disease. Front Neurol. 2019; 10:959. PMC: 6737997. DOI: 10.3389/fneur.2019.00959. View

5.
Koessler L, Cecchin T, Colnat-Coulbois S, Vignal J, Jonas J, Vespignani H . Catching the invisible: mesial temporal source contribution to simultaneous EEG and SEEG recordings. Brain Topogr. 2014; 28(1):5-20. DOI: 10.1007/s10548-014-0417-z. View