» Articles » PMID: 34903883

Peroxisomal β-oxidation Acts As a Sensor for Intracellular Fatty Acids and Regulates Lipolysis

Overview
Journal Nat Metab
Publisher Springer Nature
Specialty Endocrinology
Date 2021 Dec 14
PMID 34903883
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

To liberate fatty acids (FAs) from intracellular stores, lipolysis is regulated by the activity of the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase and monoacylglycerol lipase. Excessive FA release as a result of uncontrolled lipolysis results in lipotoxicity, which can in turn promote the progression of metabolic disorders. However, whether cells can directly sense FAs to maintain cellular lipid homeostasis is unknown. Here we report a sensing mechanism for cellular FAs based on peroxisomal degradation of FAs and coupled with reactive oxygen species (ROS) production, which in turn regulates FA release by modulating lipolysis. Changes in ROS levels are sensed by PEX2, which modulates ATGL levels through post-translational ubiquitination. We demonstrate the importance of this pathway for non-alcoholic fatty liver disease progression using genetic and pharmacological approaches to alter ROS levels in vivo, which can be utilized to increase hepatic ATGL levels and ameliorate hepatic steatosis. The discovery of this peroxisomal β-oxidation-mediated feedback mechanism, which is conserved in multiple organs, couples the functions of peroxisomes and lipid droplets and might serve as a new way to manipulate lipolysis to treat metabolic disorders.

Citing Articles

Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers.

Li S, Yuan H, Li L, Li Q, Lin P, Li K Antioxidants (Basel). 2025; 14(2).

PMID: 40002387 PMC: 11851681. DOI: 10.3390/antiox14020201.


Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis?.

Moreira R, Oliveira P, Spadella M, Ferreira R, Alves M Antioxidants (Basel). 2025; 14(2).

PMID: 40002337 PMC: 11851673. DOI: 10.3390/antiox14020150.


Metabolic phenotypes and fatty acid profiles associated with histopathology of primary aldosteronism.

Yang Y, Liu Y, Williams T, Gao M, Yan Y, Bao M Hypertens Res. 2025; .

PMID: 39939827 DOI: 10.1038/s41440-025-02143-w.


PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy.

Yang Y, Ma H, Xiong Y, Wu Q, Gao X J Biomed Sci. 2025; 32(1):20.

PMID: 39934809 PMC: 11818136. DOI: 10.1186/s12929-024-01115-5.


ACOX1 activates autophagy via the ROS/mTOR pathway to suppress proliferation and migration of colorectal cancer.

Shi B, Chen J, Guo H, Shi X, Tai Q, Chen G Sci Rep. 2025; 15(1):2992.

PMID: 39849090 PMC: 11757735. DOI: 10.1038/s41598-025-87728-8.


References
1.
Lodhi I, Semenkovich C . Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014; 19(3):380-92. PMC: 3951609. DOI: 10.1016/j.cmet.2014.01.002. View

2.
Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, Van Veldhoven P, Reddy J . Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem Biophys Res Commun. 2007; 360(2):314-9. PMC: 2732019. DOI: 10.1016/j.bbrc.2007.06.059. View

3.
Violante S, Achetib N, van Roermund C, Hagen J, Dodatko T, Vaz F . Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 2018; 33(3):4355-4364. PMC: 6404569. DOI: 10.1096/fj.201801498R. View

4.
Wanders R . Metabolic functions of peroxisomes in health and disease. Biochimie. 2013; 98:36-44. DOI: 10.1016/j.biochi.2013.08.022. View

5.
Boveris A, Oshino N, Chance B . The cellular production of hydrogen peroxide. Biochem J. 1972; 128(3):617-30. PMC: 1173814. DOI: 10.1042/bj1280617. View