» Articles » PMID: 34903859

Arene Radiofluorination Enabled by Photoredox-mediated Halide Interconversion

Overview
Journal Nat Chem
Specialty Chemistry
Date 2021 Dec 14
PMID 34903859
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Positron emission tomography (PET) is a powerful imaging technology that can visualize and measure metabolic processes in vivo and/or obtain unique information about drug candidates. The identification of new and improved molecular probes plays a critical role in PET, but its progress is somewhat limited due to the lack of efficient and simple labelling methods to modify biologically active small molecules and/or drugs. Current methods to radiofluorinate unactivated arenes are still relatively limited, especially in a simple and site-selective way. Here we disclose a method for constructing C-F bonds through direct halide/F conversion in electron-rich halo(hetero)arenes. [F]F is introduced into a broad spectrum of readily available aryl halide precursors in a site-selective manner under mild photoredox conditions. Notably, our direct F/F exchange method enables rapid PET probe diversification through the preparation and evaluation of an [F]-labelled O-methyl tyrosine library. This strategy also results in the high-yielding synthesis of the widely used PET agent L-[F]FDOPA from a readily available L-FDOPA analogue.

Citing Articles

One-Step Synthesis of [F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis.

Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B ACS Cent Sci. 2024; 10(8):1609-1618.

PMID: 39220691 PMC: 11363353. DOI: 10.1021/acscentsci.4c00407.


Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing.

Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X Acta Pharm Sin B. 2024; 14(3):1030-1076.

PMID: 38487004 PMC: 10935128. DOI: 10.1016/j.apsb.2023.11.021.


Synthetic Advantages of Defluorinative C-F Bond Functionalization.

Hooker L, Bandar J Angew Chem Int Ed Engl. 2023; 62(49):e202308880.

PMID: 37607025 PMC: 10843719. DOI: 10.1002/anie.202308880.


Radiochemistry for positron emission tomography.

Rong J, Haider A, Haider A, Jeppesen T, Josephson L, Liang S Nat Commun. 2023; 14(1):3257.

PMID: 37277339 PMC: 10241151. DOI: 10.1038/s41467-023-36377-4.


Development of [F]F-5-OMe-Tryptophans through Photoredox Radiofluorination: A New Method to Access Tryptophan-Based PET Agents.

Wu X, Ma X, Zhong Y, Chen W, Xu M, Zhang H J Med Chem. 2023; 66(5):3262-3272.

PMID: 36826835 PMC: 10463268. DOI: 10.1021/acs.jmedchem.2c01544.


References
1.
Krishnan H, Ma L, Vasdev N, Liang S . F-Labeling of Sensitive Biomolecules for Positron Emission Tomography. Chemistry. 2017; 23(62):15553-15577. PMC: 5675832. DOI: 10.1002/chem.201701581. View

2.
Venditto N, Nicewicz D . Cation Radical-Accelerated Nucleophilic Aromatic Substitution for Amination of Alkoxyarenes. Org Lett. 2020; 22(12):4817-4822. PMC: 7476680. DOI: 10.1021/acs.orglett.0c01621. View

3.
Mossine A, Tanzey S, Brooks A, Makaravage K, Ichiishi N, Miller J . Synthesis of high-molar-activity [F]6-fluoro-L-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc. 2020; 15(5):1742-1759. PMC: 7333241. DOI: 10.1038/s41596-020-0305-9. View

4.
Lee E, Kamlet A, Powers D, Neumann C, Boursalian G, Furuya T . A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science. 2011; 334(6056):639-42. PMC: 3229297. DOI: 10.1126/science.1212625. View

5.
van der Born D, Pees A, Poot A, Orru R, Windhorst A, Vugts D . Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev. 2017; 46(15):4709-4773. DOI: 10.1039/c6cs00492j. View