» Articles » PMID: 34903853

Study of Non-Newtonian Biomagnetic Blood Flow in a Stenosed Bifurcated Artery Having Elastic Walls

Overview
Journal Sci Rep
Specialty Science
Date 2021 Dec 14
PMID 34903853
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Fluid structure interaction (FSI) gained attention of researchers and scientist due to its applications in science fields like biomedical engineering, mechanical engineering etc. One of the major application in FSI is to study elastic wall behavior of stenotic arteries. In this paper we discussed an incompressible Non-Newtonian blood flow analysis in an elastic bifurcated artery. A magnetic field is applied along [Formula: see text] direction. For coupling of the problem an Arbitrary Lagrangian-Eulerian formulation is used by two-way fluid structure interaction. To discretize the problem, we employed [Formula: see text] finite element technique to approximate the velocity, displacement and pressure and then linearized system of equations is solved using Newton iteration method. Analysis is carried out for power law index, Reynolds number and Hartmann number. Hemodynamic effects on elastic walls, stenotic artery and bifurcated region are evaluated by using velocity profile, pressure and loads on the walls. Study shows there is significant increase in wall shear stresses with an increase in Power law index and Hartmann number. While as expected increase in Reynolds number decreases the wall shear stresses. Also load on the upper wall is calculated against Hartmann number for different values of power law index. Results show load increases as the Hartmann number and power law index increases. From hemodynamic point of view, the load on the walls is minimum for shear thinning case but when power law index increased i.e. for shear thickening case load on the walls increased.

Citing Articles

Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls.

Shahzad H, Wang X, Ghaffari A, Iqbal K, Hafeez M, Krawczuk M Sci Rep. 2022; 12(1):12219.

PMID: 35851297 PMC: 9293974. DOI: 10.1038/s41598-022-16213-3.


Dexmedetomidine does not compromise neuronal viability, synaptic connectivity, learning and memory in a rodent model.

Jimenez-Tellez N, Iqbal F, Pehar M, Casas-Ortiz A, Rice T, Syed N Sci Rep. 2021; 11(1):16153.

PMID: 34373548 PMC: 8352930. DOI: 10.1038/s41598-021-95635-x.

References
1.
Stroud J, Berger S, Saloner D . Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J Biomech Eng. 2002; 124(1):9-20. DOI: 10.1115/1.1427042. View

2.
Akhtar S, McCash L, Nadeem S, Saleem A . Scientific breakdown for physiological blood flow inside a tube with multi-thrombosis. Sci Rep. 2021; 11(1):6718. PMC: 7990951. DOI: 10.1038/s41598-021-86051-2. View

3.
Sharzehee M, Khalafvand S, Han H . Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis. Comput Methods Biomech Biomed Engin. 2018; 21(3):219-231. PMC: 5879495. DOI: 10.1080/10255842.2018.1439478. View

4.
Tang D, Yang C, Zheng J, Woodard P, Saffitz J, Sicard G . Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomech Eng. 2006; 127(7):1185-94. PMC: 1474006. DOI: 10.1115/1.2073668. View

5.
Malek A, Alper S, Izumo S . Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999; 282(21):2035-42. DOI: 10.1001/jama.282.21.2035. View