» Articles » PMID: 34893593

Suppressed Electronic Contribution in Thermal Conductivity of GeSbSeTe

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Dec 11
PMID 34893593
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, GeSbSeTe, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of GeSbSeTe and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of GeSbSeTe, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of GeSbSeTe thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.

Citing Articles

Connection Length Controlled Sound Speed and Thermal Conductivity of Hybrid Metalcone Films.

Hoque M, Nye R, Zare S, Atkinson S, Wang S, Jones A Nano Lett. 2025; 25(7):2594-2599.

PMID: 39928958 PMC: 11849029. DOI: 10.1021/acs.nanolett.4c03741.


Optical and Thermal Design and Analysis of Phase-Change Metalenses for Active Numerical Aperture Control.

Braid G, Ruiz de Galarreta C, Comley A, Bertolotti J, Wright C Nanomaterials (Basel). 2022; 12(15).

PMID: 35957120 PMC: 9370239. DOI: 10.3390/nano12152689.


Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO).

Aryana K, Tomko J, Gao R, Hoglund E, Mimura T, Makarem S Nat Commun. 2022; 13(1):1573.

PMID: 35322003 PMC: 8943065. DOI: 10.1038/s41467-022-29023-y.

References
1.
Loke D, Lee T, Wang W, Shi L, Zhao R, Yeo Y . Breaking the speed limits of phase-change memory. Science. 2012; 336(6088):1566-9. DOI: 10.1126/science.1221561. View

2.
Wang Y, Landreman P, Schoen D, Okabe K, Marshall A, Celano U . Electrical tuning of phase-change antennas and metasurfaces. Nat Nanotechnol. 2021; 16(6):667-672. DOI: 10.1038/s41565-021-00882-8. View

3.
Liu J, Zhu J, Tian M, Gu X, Schmidt A, Yang R . Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Rev Sci Instrum. 2013; 84(3):034902. DOI: 10.1063/1.4797479. View

4.
Cahill , W, Pohl . Lower limit to the thermal conductivity of disordered crystals. Phys Rev B Condens Matter. 1992; 46(10):6131-6140. DOI: 10.1103/physrevb.46.6131. View

5.
Zhou X, Tokina M, Tomko J, Braun J, Hopkins P, Prezhdo O . Thin Ti adhesion layer breaks bottleneck to hot hole relaxation in Au films. J Chem Phys. 2019; 150(18):184701. DOI: 10.1063/1.5096901. View