» Articles » PMID: 34888312

Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis

Overview
Specialty Cell Biology
Date 2021 Dec 10
PMID 34888312
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Function of the mature central nervous system (CNS) requires a substantial proportion of the body's energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.

Citing Articles

H-NMR-based metabolomics reveals metabolic alterations in early development of a mouse model of Angelman syndrome.

Gupta P, Barak S, Feuermann Y, Goobes G, Kaphzan H Mol Autism. 2024; 15(1):31.

PMID: 39049050 PMC: 11267930. DOI: 10.1186/s13229-024-00608-2.


Dysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus.

Bertino F, Mukherjee D, Bonora M, Bagowski C, Nardelli J, Metani L Cell Rep Med. 2024; 5(7):101647.

PMID: 39019006 PMC: 11293339. DOI: 10.1016/j.xcrm.2024.101647.


Brain development and bioenergetic changes.

Rajan A, Fame R Neurobiol Dis. 2024; 199:106550.

PMID: 38849103 PMC: 11495523. DOI: 10.1016/j.nbd.2024.106550.


Pain/Stress, Mitochondrial Dysfunction, and Neurodevelopment in Preterm Infants.

Zhao T, Chang X, Biswas S, Balsbaugh J, Liddle J, Chen M Dev Neurosci. 2024; 46(5):341-352.

PMID: 38286121 PMC: 11284246. DOI: 10.1159/000536509.


Transcriptomic analysis reveals mitochondrial pathways associated with distinct adolescent behavioral phenotypes and stress response.

Santos-Silva T, Hazar Ulgen D, Lopes C, Guimaraes F, Alberici L, Sandi C Transl Psychiatry. 2023; 13(1):351.

PMID: 37978166 PMC: 10656500. DOI: 10.1038/s41398-023-02648-3.


References
1.
Orihuela R, McPherson C, Harry G . Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2015; 173(4):649-65. PMC: 4742299. DOI: 10.1111/bph.13139. View

2.
Yamada M, Yoshida Y, Mori D, Takitoh T, Kengaku M, Umeshima H . Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nat Med. 2009; 15(10):1202-7. PMC: 2759411. DOI: 10.1038/nm.2023. View

3.
Davies V, Hollins A, Piechota M, Yip W, Davies J, White K . Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet. 2007; 16(11):1307-18. DOI: 10.1093/hmg/ddm079. View

4.
Bott C, McMahon L, Keil J, Yap C, Kwan K, Winckler B . Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons. J Neurosci. 2020; 40(19):3720-3740. PMC: 7204086. DOI: 10.1523/JNEUROSCI.2471-19.2020. View

5.
Fatt M, Hsu K, He L, Wondisford F, Miller F, Kaplan D . Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation. Stem Cell Reports. 2015; 5(6):988-995. PMC: 4682208. DOI: 10.1016/j.stemcr.2015.10.014. View