» Articles » PMID: 34882409

Simplified Gene Knockout by CRISPR-Cas9-Induced Homologous Recombination

Overview
Journal ACS Synth Biol
Date 2021 Dec 9
PMID 34882409
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic engineering of industrial cell lines often requires knockout of multiple endogenous genes. Tools like CRISPR-Cas9 have enabled serial or parallelized gene disruption in a wide range of industrial organisms, but common practices for the screening and validation of genome edits are lacking. For gene disruption, DNA repair by homologous recombination offers several advantages over nonhomologous end joining, including more efficient screening for knockout clones and improved genomic stability. Here we designed and characterized a knockout fragment intended to repair Cas9-induced gene disruptions by homologous recombination. We identified knockout clones of with high fidelity by PCR, removing the need for Sanger sequencing. Short overlap sequences for homologous recombination (30 bp) enabled the generation of gene-specific knockout fragments by PCR, removing the need for subcloning. Finally, we demonstrated that the genotype conferred by the knockout fragment is stable under common cultivation conditions.

Citing Articles

SelectRepair Knockout: Efficient PTC-Free Gene Knockout Through Selectable Homology-Directed DNA Repair.

Cortazar M, Jagannathan S Methods Mol Biol. 2024; 2863:397-417.

PMID: 39535722 DOI: 10.1007/978-1-0716-4176-7_23.


Opportunities for CRISPR-Cas9 application in farm animal genetic improvement.

Aboelhassan D, Abozaid H Mol Biol Rep. 2024; 51(1):1108.

PMID: 39476174 DOI: 10.1007/s11033-024-10052-3.


Establishment of the CRISPR-Cpf1 gene editing system in and multiplexed gene knockout.

Liu S, Xiao F, Li Y, Zhang Y, Wang Y, Shi G Synth Syst Biotechnol. 2024; 10(1):39-48.

PMID: 39224148 PMC: 11366866. DOI: 10.1016/j.synbio.2024.08.002.


Oligonucleotide-based CRISPR-Cas9 toolbox for efficient engineering of Komagataella phaffii.

Strucko T, Gadar-Lopez A, Frohling F, Frost E, Iversen E, Olsson H FEMS Yeast Res. 2024; 24.

PMID: 39179418 PMC: 11364938. DOI: 10.1093/femsyr/foae026.


CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome.

Dalvie N, Lorgeree T, Yang Y, Rodriguez-Aponte S, Whittaker C, Hinckley J Microb Cell Fact. 2024; 23(1):217.

PMID: 39085844 PMC: 11293167. DOI: 10.1186/s12934-024-02466-2.


References
1.
Dalvie N, Rodriguez-Aponte S, Hartwell B, Tostanoski L, Biedermann A, Crowell L . Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proc Natl Acad Sci U S A. 2021; 118(38). PMC: 8463846. DOI: 10.1073/pnas.2106845118. View

2.
Choi B, Bobrowicz P, Davidson R, Hamilton S, Kung D, Li H . Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A. 2003; 100(9):5022-7. PMC: 154291. DOI: 10.1073/pnas.0931263100. View

3.
Weninger A, Fischer J, Raschmanova H, Kniely C, Vogl T, Glieder A . Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J Cell Biochem. 2017; 119(4):3183-3198. PMC: 5887973. DOI: 10.1002/jcb.26474. View

4.
van Overbeek M, Capurso D, Carter M, Thompson M, Frias E, Russ C . DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. 2016; 63(4):633-646. DOI: 10.1016/j.molcel.2016.06.037. View

5.
Gleeson M, White C, Meininger D, Komives E . Generation of protease-deficient strains and their use in heterologous protein expression. Methods Mol Biol. 1998; 103:81-94. DOI: 10.1385/0-89603-421-6:81. View