» Articles » PMID: 34878117

Whole-Genome Sequencing Highlights Conservative Genomic Strategies of a Stress-Tolerant, Long-Lived Scleractinian Coral, Porites Australiensis Vaughan, 1918

Overview
Date 2021 Dec 8
PMID 34878117
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified 60 Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.

Citing Articles

Evolution of the Cdk4/6-Cdkn2 system in invertebrates.

Yuki S, Sasaki S, Yamamoto Y, Murakami F, Sakata K, Araki I Genes Cells. 2024; 29(11):1037-1051.

PMID: 39380239 PMC: 11555623. DOI: 10.1111/gtc.13165.


Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation.

Voolstra C, Hume B, Armstrong E, Mitushasi G, Porro B, Oury N NPJ Biodivers. 2024; 2(1):15.

PMID: 39242808 PMC: 11332039. DOI: 10.1038/s44185-023-00020-8.


Genomes of the Caribbean reef-building corals , and .

Locatelli N, Baums I bioRxiv. 2024; .

PMID: 39229226 PMC: 11370458. DOI: 10.1101/2024.08.21.608299.


Genome and tissue-specific transcriptomes of the large-polyp coral, Fimbriaphyllia (Euphyllia) ancora: a recipe for a coral polyp.

Shikina S, Yoshioka Y, Chiu Y, Uchida T, Chen E, Cheng Y Commun Biol. 2024; 7(1):899.

PMID: 39048698 PMC: 11269664. DOI: 10.1038/s42003-024-06544-4.


Genomic data reveals habitat partitioning in massive Porites on Guam, Micronesia.

Primov K, Burdick D, Lemer S, Forsman Z, Combosch D Sci Rep. 2024; 14(1):17107.

PMID: 39048606 PMC: 11269739. DOI: 10.1038/s41598-024-67992-w.


References
1.
The UniProt Consortium . UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018; 46(5):2699. PMC: 5861450. DOI: 10.1093/nar/gky092. View

2.
Jones P, Binns D, Chang H, Fraser M, Li W, McAnulla C . InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014; 30(9):1236-40. PMC: 3998142. DOI: 10.1093/bioinformatics/btu031. View

3.
Wang X, Liew Y, Li Y, Zoccola D, Tambutte S, Aranda M . Draft genomes of the corallimorpharians Amplexidiscus fenestrafer and Discosoma sp. Mol Ecol Resour. 2017; 17(6):e187-e195. DOI: 10.1111/1755-0998.12680. View

4.
Beck J, Edwards R, Ito E, Taylor F, Recy J, Rougerie F . Sea-surface temperature from coral skeletal strontium/calcium ratios. Science. 1992; 257(5070):644-7. DOI: 10.1126/science.257.5070.644. View

5.
Mydlarz L, Holthouse S, Peters E, Harvell C . Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One. 2008; 3(3):e1811. PMC: 2267492. DOI: 10.1371/journal.pone.0001811. View