» Articles » PMID: 34877627

Neuroecology Beyond the Brain: Learning in Echinodermata

Overview
Journal Learn Behav
Publisher Springer
Date 2021 Dec 8
PMID 34877627
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

We propose an expansion of neuroecological comparisons to include the capabilities of brainless and non-neural organisms. We begin this enterprise by conducting a systematic search for studies on learning in echinoderms. Echinodermata are marine invertebrates comprising starfish, brittle stars, sea cucumbers, sea urchins, and sea lilies. Animals in this phylum lack any centralized brain and instead possess diffuse neural networks known as nerve nets. The learning abilities of these animals are of particular interest as, within the bilaterian clade, they are close evolutionary neighbors to chordates, a phylum whose members exhibit complex feats in learning and contain highly specialized brains. The learning capacities and limitations of echinoderms can inform the evolution of nervous systems and learning in Bilateria. We find evidence of both non-associative and associative learning (in the form of classical conditioning) in echinoderms, which was primarily focused on starfish. Additional evidence of learning is documented in brittle stars, sand dollars, and sea urchins. We then discuss the evolutionary significance of learning capabilities without a brain, the presence of embodied cognition across multiple groups, and compare the learning present in echinoderms with the impressive cognitive abilities documented in the oldest linage group within vertebrates (the major group within the phylum of chordates), fish.

Citing Articles

Evolution and Function of the Notch Signaling Pathway: An Invertebrate Perspective.

Lv Y, Pang X, Cao Z, Song C, Liu B, Wu W Int J Mol Sci. 2024; 25(6).

PMID: 38542296 PMC: 10970066. DOI: 10.3390/ijms25063322.


Minding the gut: extending embodied cognition and perception to the gut complex.

Boem F, Greslehner G, Konsman J, Chiu L Front Neurosci. 2024; 17:1172783.

PMID: 38260022 PMC: 10800657. DOI: 10.3389/fnins.2023.1172783.

References
1.
Birenheide R, Motokawa T . Contractile connective tissue in crinoids. Biol Bull. 1996; 191(1):1-4. DOI: 10.2307/1543055. View

2.
Boisseau R, Vogel D, Dussutour A . Habituation in non-neural organisms: evidence from slime moulds. Proc Biol Sci. 2016; 283(1829). PMC: 4855389. DOI: 10.1098/rspb.2016.0446. View

3.
Bronfman Z, Ginsburg S, Jablonka E . The Transition to Minimal Consciousness through the Evolution of Associative Learning. Front Psychol. 2017; 7:1954. PMC: 5177968. DOI: 10.3389/fpsyg.2016.01954. View

4.
Brown C . Fish intelligence, sentience and ethics. Anim Cogn. 2014; 18(1):1-17. DOI: 10.1007/s10071-014-0761-0. View

5.
Brown A, Spetch M, Hurd P . Growing in circles: rearing environment alters spatial navigation in fish. Psychol Sci. 2007; 18(7):569-73. DOI: 10.1111/j.1467-9280.2007.01941.x. View