» Articles » PMID: 34876571

Adiabatic Versus Non-adiabatic Electron Transfer at 2D Electrode Materials

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Dec 8
PMID 34876571
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.

Citing Articles

NSF NeXUS: A New Model for Accessing the Frontiers of Ultrafast Science.

Robert Baker L, DiMauro L, Turro C, Gupta J, Kawakami R, Allison T ACS Cent Sci. 2025; 11(1):12-18.

PMID: 39866709 PMC: 11758494. DOI: 10.1021/acscentsci.4c01682.


Multiscale Modeling of CO Electrochemical Reduction on Copper Electrocatalysts: A Review of Advancements, Challenges, and Future Directions.

Gholizadeh R, Pavlin M, Hus M, Likozar B ChemSusChem. 2024; 18(1):e202400898.

PMID: 39022871 PMC: 11696222. DOI: 10.1002/cssc.202400898.


SARS-CoV-2 journey: from alpha variant to omicron and its sub-variants.

Hattab D, Amer M, Al-Alami Z, Bakhtiar A Infection. 2024; 52(3):767-786.

PMID: 38554253 PMC: 11143066. DOI: 10.1007/s15010-024-02223-y.


The New Era of High-Throughput Nanoelectrochemistry.

Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur J Anal Chem. 2023; 95(1):319-356.

PMID: 36625121 PMC: 9835065. DOI: 10.1021/acs.analchem.2c05105.

References
1.
Chidsey C . Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science. 1991; 251(4996):919-22. DOI: 10.1126/science.251.4996.919. View

2.
Hill C, Kim J, Bodappa N, Bard A . Electrochemical Nonadiabatic Electron Transfer via Tunneling to Solution Species through Thin Insulating Films. J Am Chem Soc. 2017; 139(17):6114-6119. DOI: 10.1021/jacs.6b12104. View

3.
Smalley J, Finklea H, Chidsey C, Linford M, Creager S, Ferraris J . Heterogeneous electron-transfer kinetics for ruthenium and ferrocene redox moieties through alkanethiol monolayers on gold. J Am Chem Soc. 2003; 125(7):2004-13. DOI: 10.1021/ja028458j. View

4.
Cook S, Horrocks B . Heterogeneous Electron-Transfer Rates for the Reduction of Viologen Derivatives at Platinum and Bismuth Electrodes in Acetonitrile. ChemElectroChem. 2017; 4(2):320-331. PMC: 5467523. DOI: 10.1002/celc.201600536. View

5.
Zhang G, Cuharuc A, Guell A, Unwin P . Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models. Phys Chem Chem Phys. 2015; 17(17):11827-38. DOI: 10.1039/c5cp00383k. View