Quantification of Myocyte Disarray in Human Cardiac Tissue
Overview
Authors
Affiliations
Proper three-dimensional (3D)-cardiomyocyte orientation is important for an effective tension production in cardiac muscle. Cardiac diseases can cause severe remodeling processes in the heart, such as cellular misalignment, that can affect both the electrical and mechanical functions of the organ. To date, a proven methodology to map and quantify myocytes disarray in massive samples is missing. In this study, we present an experimental pipeline to reconstruct and analyze the 3D cardiomyocyte architecture in massive samples. We employed tissue clearing, staining, and advanced microscopy techniques to detect sarcomeres in relatively large human myocardial strips with micrometric resolution. Z-bands periodicity was exploited in a frequency analysis approach to extract the 3D myofilament orientation, providing an orientation map used to characterize the tissue organization at different spatial scales. As a proof-of-principle, we applied the proposed method to healthy and pathologically remodeled human cardiac tissue strips. Preliminary results suggest the reliability of the method: strips from a healthy donor are characterized by a well-organized tissue, where the local disarray is log-normally distributed and slightly depends on the spatial scale of analysis; on the contrary, pathological strips show pronounced tissue disorganization, characterized by local disarray significantly dependent on the spatial scale of analysis. A virtual sample generator is developed to link this multi-scale disarray analysis with the underlying cellular architecture. This approach allowed us to quantitatively assess tissue organization in terms of 3D myocyte angular dispersion and may pave the way for developing novel predictive models based on structural data at cellular resolution.
Vermoortele D, Olianti C, Amoni M, Giardini F, De Buck S, Nagaraju C Commun Eng. 2024; 3(1):170.
PMID: 39543278 PMC: 11564904. DOI: 10.1038/s44172-024-00307-z.
Contractility measurements for cardiotoxicity screening with ventricular myocardial slices of pigs.
Shi R, Reichardt M, Fiegle D, Kupfer L, Czajka T, Sun Z Cardiovasc Res. 2023; 119(14):2469-2481.
PMID: 37934066 PMC: 10651213. DOI: 10.1093/cvr/cvad141.
Fiber enhancement and 3D orientation analysis in label-free two-photon fluorescence microscopy.
Sorelli M, Costantini I, Bocchi L, Axer M, Pavone F, Mazzamuto G Sci Rep. 2023; 13(1):4160.
PMID: 36914673 PMC: 10011555. DOI: 10.1038/s41598-023-30953-w.
Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human HCM.
Pioner J, Vitale G, Steczina S, Langione M, Margara F, Santini L Circ Res. 2023; 132(5):628-644.
PMID: 36744470 PMC: 9977265. DOI: 10.1161/CIRCRESAHA.122.321956.
Myocardial mesostructure and mesofunction.
Wilson A, Sands G, LeGrice I, Young A, Ennis D Am J Physiol Heart Circ Physiol. 2022; 323(2):H257-H275.
PMID: 35657613 PMC: 9273275. DOI: 10.1152/ajpheart.00059.2022.